•  
  •  
 

Central Asian Journal of Medicine

Abstract

Knowledge of the role of pathogens and endotoxins in peritonitis and its complications can improve diagnostic accuracy and improve treatment outcomes. The etiology of peritonitis is multifactorial. The disease affects the cardiovascular, immune, endocrine systems of the human body. Models of peritonitis in animals help to evaluate the efficacy and safety of potential therapeutic agents. However, their physiological limitations serve as a barrier to translating research results into clinical practice. Evidence-based information could potentially facilitate the interpretation of animal research results that can be successfully used in clinical trials.

First Page

54

Last Page

60

References

1. Akira Sh. Toll-like receptor signaling // J. Biol. Chem. – 2003. – Vol. 278 (40). – P. 38105-38108. 2. Asehnoune K., Strassheim D., Mitra S. et al. Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa B // J. Immunol. (Baltimore). – 2004. – Vol. 172, №4. – P. 2522-2529. 3. Baker B., Maitra U., Geng Sh., Li L. Molecular and cellular mechanisms responsible for cellular stress and low- grade inflammation induced by a super-low dose of endotoxin // J. Biol. Chem. – 2014. – Vol. 289 (23). – P. 16262-16269. 4. Bilbault H., Haymann J.-Ph. Experimental models of renal calcium stones in rodents // Wld J. Nephrol. – 2016. – Vol. 5, №2. – P. 189-194. 5. Buras J.A., Holzmann B., Sitkovsky M., Animal Models of sepsis: setting the stage // Nat. Rev. Drug Dis. – 2005. – Vol. 4, №10. – P.854-865. 6. Call D.R., Nemzek J.A., Ebong S.J. et al. Ratio of local to systemic chemokine concentrations regulates neutrophil recruitment // Amer. J. Pathol. – 2001. – Vol. 158, №2. – P. 715-721. 7. Caruntu F.A., Benea L. Spontaneous bacterial peritonitis: pathogenesis, diagnosis, treatment // J. Gastrointest. Liver Dis. – 2006. – Vol. 15, №l. – P. 51-56. 8. Cash J.L, White G.E, Greaves D.R. Chapter 17. Zymosan-induced peritonitis as a simple experimental system for the study of inflammation // Methods in enzymology. – 2009. – Vol. 461. – P. 379-396. 9. Chaturvedi A.A., Buyne O.R., Lomme R. et al. Efficacy and Safety of Ultrapure Alginate-Based Anti- Adhesion Gel in Experimental Peritonitis // Surg. Infect. – 2015. – Vol. 16, №4. – P. 410-414. 10. Chaudhry H., Zhou J., Zhong Y. et al. Role of cytokines as a double-edged sword in sepsis // In vivo (Athens, Greece). – 2013. – Vol. 27, №6. – P. 669-684. 11. Christou N.V. Systemic and peritoneal host defense in peritonitis // Wld J. Surg. – 1990. – Vol. 14, №2. – P. 184-190. 12. Echtenacher B., Freudenberg M.A., Jack R.S., Mannel D.N. Differences in innate defense mechanisms in endotoxemia and polymicrobial septic peritonitis // Infect. Immun. – 2001. – Vol. 69. – P. 7271-7276. 13. Echtenacher B., Mannel D.N., Hultner L. Critical protective role of mast cells in a model of acute septic peritonitis // Nature. – 1996. – Vol. 381. – P. 75-77. 14. Echtenacher B., Weigl K., Lehn N., Mannel D.N. Tumor necrosis factor-dependent adhesions as a major protective mechanism early in septic peritonitis in mice // Infect. Immun. – 2001. – Vol. 69. – P. 3550-3555. 15. Feng X., Yang X., Yi Ch. et al. Escherichia coli Peritonitis in peritoneal dialysis: the prevalence, antibiotic resistance and clinical outcomes in a South China dialysis center, Peritoneal dialysis international // J. Int. Soc. Peritoneal Dialys. – 2014. – Vol. 34, №3. – P. 308-316. 16. Fieren M., Willem J.A. The local inflammatory responses to infection of the peritoneal cavity in humans: their regulation by cytokines, macrophages, and other leukocytes // Mediators of inflammation. – 2012. – P. 976241. 17. Hau T., Bacteria, toxins, and the peritoneum // Wld J. Surg. – 1990. – Vol. 14, №2. – P. 167-175. 18. Huang Hang-Ning, Chan Yi-Lin, Wu Chang-Jer et al. Stimulates Cell Proliferation and Wound Closure in MRSA-Infected Wounds in Mice // Marine drugs. – 2015. – Vol. 13, №5. – P. 2813-2833. 19. Kohler J., Heumann D., Garotta G. et al. IFN-gamma involvement in the severity of gram-negative infections in mice // J. Immunol. – 1993. – Vol. 151. – P. 916-921. 20. Lam D., Harris D., Qin Zh. Inflammatory mediator profiling reveals immune properties of chemotactic gradients and macrophage mediator production inhibition during thioglycollate elicited peritoneal inflammation // Mediators of inflammation. – 2013. – P. 931562. 21. Leijh P.C., van Zwet T.L., Kuile M.N., van Furth R. Effect of thioglycolate on phagocytic and microbicidal activities of peritoneal macrophages // Infect. Immun. – 1984. – Vol. 46, №2. – P. 448-452. 22. Leypoldt J.K., Kamerath C.D., Gilson J. Acute peritonitis in a C57BL/6 mouse model of peritoneal dialysis, Advances in peritoneal dialysis // Conference on Peritoneal Dialysis. – 2007. – Vol. 23. – P. 66-70. 23. Lozano F.S., Garcia M.I., Garcia E. et al. Activity of Ertapenem and Ceftriaxone in the eradication of Salmonella in a model of experimental peritonitis in mice, Revistaespanola de quimioterapia: publicacionoficial de la Sociedad // Espanola de Quimioterapia. – 2009. – Vol. 22, №3. – P. 135-138. 24. Mak I., Evaniew N., Ghert M. Lost in translation: animal models and clinical trials in cancer treatment // Amer. J. Transl. Res. – 2014. – Vol. 6, №2. – P. 114-118. 25. McGrath E.E., Marriott H.М., Lawrie A. et al. TNF related apoptosis-inducingligand (TRAIL) regulates inflammatory neutrophil apoptosis and enhances resolution of inflammation // J. Leukoc. Biol. – 2011. – Vol. 90, №5. – P. 855-865. 26. Miyazaki Sh., Ishikawa F., Fujikawa T. et al. Intraperitoneal injection of lipopolysaccharide induces dynamic migration of Gr-l highpolymorphonuclear neutrophils in the murine abdominal cavity // Clin. Diag. Lab. Immunol. – 2004. – Vol. 11, №3. – P. 452-457. 27. Muniz B.F., Netto G.M., Ferreira M. et al. Neutrophilic infiltration in lungs of mice with peritonitis in acid or basic medium // Int. J. Clin. Exp. Med. – 2015. – Vol. 8, №4. – P. 5812-5817. 28. Nathens A.B., Rotstein O.D., Marshall J.C. Tertiary peritonitis: clinical features of a complex nosocomial infection // Wld J. Surg. – 1998. – Vol. 22. – P. 158-163. 29. Ono S., Ueno C., Aosasa S. et al. Severe sepsis induces deficient interferon-gamma and interleukin-12 production, but interleukin-12 therapy improves survival in peritonitis // Amer. J. Surg. – 2001. – Vol. 182. – P. 491-497. 30. Ordonez C.A., Puyana J.C. Management of peritonitis in the critically ill patient // Surg. Clin. North Amer. – 2006. – Vol. 86, №6. – P. 1323-1349. 31. Park H.S. et al. Cutting edge: direct interaction ofTLR4 with NAD (P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa // Вrit. J. Immunol. – 2004. – Vol. 173, №6. – P. 3589-3593. 32. Peng Z.-Y., Bishop J.V., Wen X.-Y. et al. Modulation of chemokine gradients by apheresis redirects leukocyte trafficking to different compartments during sepsis, studies in a rat model // Crit. Care (London. – 2014. – Vol. 18, №4. – P. R141.

Share

COinS