•  
  •  
 

Euroasian Journal of Semiconductors Science and Engineering

Euroasian Journal of Semiconductors Science and Engineering

Abstract

The analysis of the study’s results of the physical properties of metal-insulator-semiconductor (MIS) structures of the Al-SiO2-Si type is presented. It is noted in such structures obtained by the method of thermal oxidation, the main determining parameters of MIS structures are surface states (SS) at the Si-SiO2 interface. The irradiation with γ-quanta of MIS structures leads to an increase in Nss and Dss and, also to a change in their energy distribution in the Si band gap. Studies of the structure of silicon-based solid solutions and heterostructures by electro-physical, photoelectric, X-ray structural and scanning probe microscopic methods have established structural features and determined the possibility of creating new multilayer electronic products with unique functions.

References

1. Alferov Zh.I. Nauka i obshhestvo [Science and Society]. St. Petersburg, Publ. Nauka. – 2005,p.386.(In Russ.) 2. Muzaffarova S.A., Akromov Sh.A., Zhanabergenov Zh. Mekhanizm perenosa toka v geteroperekhodakh nCdS/pCdTe[Mechanism of current transfer in nCdS / pCdTe heterojunctions]. Semiconductors. 2007, vol.49, no. 6, pp.1111-1116.(In Russ.) 3. Monch W. Semiconductor surfaces and interfaces. Third Revised Edition published by Springer-Verilog Berlin Heidelberg New York. 2001, p. 442. 4. Yulchiev Sh.H. Vliyanie legirovaniya kremniya netraditsionnymi primesyami i ioniziruyushego oblucheniya nakharakteristiki granitsa razdela Si-SiO2[Influence of silicon doping with unconventional impurities and ionizing radiation on the characteristics of the Si-SiO2 interface]. Dis. of cand. Phys. Math. Sc., 2005. p. 136. (In Russ.) 5. Nesterov D.N. Osobennosti elektronno-energeticheskogo stroeniya dvumernyh i odnomernyh nanostruktur kremniya [Features of the electronic-energy structure of two-dimensional and one-dimensional silicon nanostructures],Dis. of cand. Phys. Math. Sc., 2005. p. 122. (In Russ.) 6. Parchinskii P.B., Vlasov S.I., Ligai L.G. Issledovanie vliyaniya ul'trazvukovogo vozdeistviya na generatsionnye kharakteristiki predvaritel'no obluchennoi granitsy razdela kremnii–dioksid kremniya [Investigation of the influence of ultrasonic action on the generation characteristics of the pre-irradiated silicon – silicon dioxide interface]. Semiconductors. 2006. vol. 40, no7, pp. 828-832.(In Russ.) 7. Andreev V. Modifikatsiya dielektricheskikh plenok MDP-priborov[Modification of dielectric films of MIS-devices]. Elektronika (Plenochnye materialy v mikroelektronike)[Electronics (Film materials in microelectronics,)]. 2014,Special-issue. (00137),pp. 169-176.(In Russ.) 8. Teshaboev A., Zainabidinov S.Z., Musaev E.A. Yarimutkazgichlar va yarimutkazgichli asbobolar tekhnologiyasi [Technology of semiconductors and semiconductor devices.]. Tashkent Publ. Uzbekistan, 2005. p. 395. (In Uzb.) 9. Timoshina M.I. Vliyanie termoobrabotki i legirovaniya na svoistva monokristallicheskogo kremniya [Influence of heat treatment and alloying on the properties of monocrystalline silicon],Dis. of cand. Phys. Math. Sc., Moscow, 2011. p. 209. (In Russ.) 10. Karmokov A.M., Lyuev V.K. Vliyanie stareniya na pereraspredelenie legiruyushchei primesi v strukture Si–SiO2 [The effect of aging on the redistribution of the dopant in the Si – SiO2 structure], Modern high technologies. 2016,no. 6,pp.42-46. (In Russ.) 11. Naumova O.V. Nanorazmernye struktury Si/SiO2 i sensory na ikh osnove [Si/SiO2 nanoscale structures and sensors based on them],Dis. of cand. Phys. Math. Sc., Novosibirsk, 2012. p.323.(In Russ.) 12. Sopinskii N.V., Russu A.V. Ellipsometricheskoe issledovanie formirovaniya nanokompozitov otzhigom plenok SiOx v kislorodsoderzhashchei srede [Ellipsometric study of the formation of nanocomposites by annealing SiOx films in an oxygen-containing medium]. Autometry. 2015,vol. 51, no. 4,pp. 121-127.(In Russ.) 13. Gorb A.M. Korotchenkov O.A., Olikh O.Ya., Podolian A.O., Chupryna R.G. Influence of γ-irradiation and ultrasound treatment on current mechanism in Au-SiO2-Si structure. Solid State Electronics. 2020,vol. 165, pp. 1-6. 14. Volovichev I.N., Gurevich Yu.G. Generatsionno-rekombinatsionnye protsessy v poluprovodnikakh [Generation-recombination processes in semiconductors]. Semiconductors. 2001,vol. 35, no. 3,pp. 321-329. (In Russ.) 15. Zainabidinov S.Z., Iulchiev Sh.Kh. Effect of the Nickel Impurity on the Rate of Surface Generation of Charge Carriers at the Si–SiO2 Interface. Russian Physics Journal. 2003, vol. 46,pp. 161–164. 16. Milovanov Yu.S., Kuznetsov G.V., Skryshevskii V.A., Styupan S.M. Transport zaryada v nanokompozitnykh strukturakh kremnii-SiO2, kremnii-TiO2[Charge transport in nanocomposite structures silicon-SiO2, silicon-TiO2]. Semiconductors.2014,vol. 48, no. 10. pp. 1370-1376.(In Russ.) 17. Karimov I.N. et.al. Generation-recombination characteristics of the interface of Si-SiO2 structures. Scientific Bulletin. Physical and Mathematical Research. 2019,vol.1. No. 1, pp. 14-26. 18. Hironori Yoshioka, Takashi Nakamura, and Tsunenobu Kimoto. Generation of very fast states by nitridation of the SiO2/SiC interface. Journal of Applied Physics. 2012,vol. 112, no. 2, pp. 1-10. 19. Daliev Kh.S., Iulchiev Sh.Kh., Mansurov Kh.Zh. Vliyanie primesnykh atomov rodii i iridii na emkostnye kharakteristiki Si-SiO2 struktur[Influence of impurity atoms of rhodium and iridium on the capacitance characteristics of Si-SiО2 structures]. Euroasian Journal of Semiconductors Science and Engineering.2019,vol. 1, no. 2, pp. 10-15.(In Russ.) 20. Baraban A.P. i dr. Osobennosti sloev SiO2, sintezirovannykh na kremnii metodom molekulyarnogo naslaivaniya [Features of SiO2 layers synthesized on silicon by molecular layering]. Semiconductors, 2020, vol. 54, no. 4, pp. 427-431.(In Russ.) 21. Schrimpf R.D. Radiation effects in new materials for nano-devices. Microelectronic Engineering. 2011. Vol. 88, no. 7,pp. 1259-1264. 22. Burkov S.I. et al. Influence of Uniaxial Pressure on Elastic Waves Propagation in Piezoelectric Layered Structures "Y-cut langasite/fused silica" Journal of Siberian Federal University. Mathematics & Physics. 2015, vol.8, no. 1,pp. 7–21. 23. Vavilov V.S., Eorin B.M., Danilin N.S., Kiv A.E., Nurov Yu.A., Shakhovtsev V.I. Radiatsionnye metody v tverdotel'noi elektronike [Radiation techniques in solid state electronics.]. Moscow, Publ. Radio i svyaz', 1990, p. 184.(In Russ.) 24. B.I. Total Ionizing Dose Effects in Hydrogen Sensors Based on MISFET. IEEE Transactions on Nuclear Science. 2016. Vol. 63, no. 4,pp. 2095 – 2105. 25. Kuz'minova A.V., Kulikov N.A., Popov V.D. Issledovanie radiatsionnykh effektov v MOP-tranzictore s p-kanalom [Study of radiation effects in a p-channel MOS transistor]. Semiconductors.2020. Vol. 54, no. 8, pp. 729-733.(In Russ.) 26. Ristis G.S. et al. Comparison between post-irradiation annealing and post-high electric field stress annealing of n-channel power VDMOSFETs. Applied Surface Science. 2003, Vol. 220(1–4), pp. 181-185. 27. Mamatkarimov O.O., Khimmatkulov O., Tursunov I.G. Vliyanie odnoosnoi uprugoi deformatsii na vol'tampernuyu kharakteristiku poverkhnostno-bar'ernykh diodov Sb−p-SihMni−A[Influence of uniaxial elastic deformation on the current-voltage characteristic of surface-barrier diodes Sb – p-SihMni – A].Semiconductors.2020. Vol. 54, no. 5, pp. 467-469.(In Russ.) 28. Aleksandrov O.V. Dispersionnyi transport vodoroda v MOP-strukturakh posle ioniziruyushchego oblucheniya[Dispersive transport of hydrogen in MOS structures after ionizing irradiation]. Semiconductors,2020, vol. 54, no. 10, pp. 1029-1033. (In Russ.) 29. Zainabidinov S.Z. Ostatochnye effekty vliyaniya vneshnikh vozdeistvii v kremnii i kremnievykh strukturakh, soderzhashchikh elektricheskikh neaktivnykh primesi[Residual effects of external influences in silicon and silicon structures containing electrical inactive impurities].Dis. of cand. Phys. Math. Sc., Tashkent, 1987,p. 321.(In Russ.) 30. Usmonov Sh.N. Vzaimodeistvie primesei v tverdykh rastvorakh na osnove kremniya, arsenida-galliya, selenida-tsinka, sernistogokadmiya i elektrofizicheskie svoistva geterostruktur, poluchennykh na ikh osnove[Interaction of impurities in solid solutions based on silicon, gallium arsenide, zinc selenide, cadmium sulphide and electrophysical properties of heterostructures obtained on their basis], Diss. of Doc. of Phys. Math. Sc., Tashkent. 2018.(In Russ.) 31. Saidov A.S., Koshchanov E.A., Razzakov A.Sh., O vozmozhnosti uluchsheniya strukturnogo sovershenstva novykh geteropar GaAs–(Ge2)1−x(ZnSe)x, Ge–(Ge2)1−x(ZnSe)x, GaP–(Ge2)1−x(ZnSe)x, Si–(Ge2)1−x(ZnSe)x[On the possibility of improving the structural perfection of new heteropairsGaAs–(Ge2)1−x(ZnSe)x, Ge–(Ge2)1−x(ZnSe)x, GaP–(Ge2)1−x(ZnSe)x, Si–(Ge2)1−x(ZnSe)x]. Pis'ma v Zhurnal tehnicheskoj fiziki [Letters to the Journal of Technical Physics], 1998,vol. 24, no. 2, pp. 12-16.(In Russ.) 32. Park K. and Alberi K. Tailoring Heterovalent Interface Formation with Light. Sci. Report. 2017, no. 7. pp. 8516-8521. 33. Bing-Yi J., Jian-Bang Zh., Chun-Feng W, Juan H., and Chong-De C., Optimization of quantum dot solar cells, based on structures of GaAs/InAs-GaAs/ZnSe. Acta Physica Sinica. 2012. Vol. 61, no. 13, pp. 1-6. 34. Sapaev B. Issledovanie rosta i fotoelektricheskikh svoistv epitaksial'nykh geterostruktur Ge−(Ge2)1−x(GaAs)x, poluchennykh iz svintsovogo rastvora-rasplava metodom zhidkostnoi epitaksii[Investigation of the growth and photoelectric properties of epitaxialGe−(Ge2)1−x(GaAs)xheterostructures obtained from a lead solution-melt by liquid epitaxy].Pis'ma v Zhurnal tehnicheskoj fiziki [Letters to the Journal of Technical Physics], 2004, vol. 30, no. 15,pp. 29–37.(In Russ.) 35. Kawai H., Giorgi G., and Yamashita K. Back Cover: Impact of short‐range order and clusterization on the bandgap bowing: First‐principles calculations on the electronic properties of metastable (GaAs)1–x(Ge2)x alloys. Physica Status Solidi B. 2012, Vol. 249, no. 1,pp. 29-37. 36. Sapaev B. Saidov A.S., Zaveryukhin B.N. Poluchenie epitaksial'nykh sloev tverdykh rastvorov (Si2)1-x(GaAs)x na Si-podlozhkakh i issledovanie ikh elektricheskikh, fotoelektricheskikh kharakteristik[Obtaining epitaxial layers of solid solutions (Si2)1-x(GaAs) x on Si-substrates and the study of their electrical, photoelectric characteristics].Pis'ma v Zhurnal tehnicheskoj fiziki [Letters to the Journal of Technical Physics], 2004,vol. 30, no. 2,pp. 25-32. (In Russ.) 37. Brazhkin V.V. High-pressure synthesized materials: Treasures and hints. High Pressure Research. 2007. Vol. 27, no. 3,pp. 333-351. 38. Saidov A.S., Usmonov Sh.N., Kholikov K.T., Saparov D. Vyrashchivanie i fotochuvstvitel'nost' pSi–n(Si2)1-x(GaSb)x struktur [Growth and photosensitivity of pSi–n(Si2)1-x(GaSb)x structures]. Geliotekhnika[Solar technology]. 2007,no. 3,pp. 85-88.(In Russ.) 39. Vasil'ev V.I., Gagis G.S., Kuchinskii V.I., Danil'chenko V.G. Formirovanie troinykh tverdykh rastvorov AIIIBV na plastinakh GaAs i GaSb, za schet tverdofaznykh reaktsii zameshcheniya[Formation of AIIIBV ternary solid solutions on GaAs and GaSb plates, due to solid-phase substitution reactions]. Semiconductors. 2015,vol. 49, no. 7,pp. 984-988. (In Russ.) 40. Gadzhialiev M.M., Pirmagomedov Z.Sh., and Éfendieva T.N., The effect of a thermoelectric field on a current-voltage characteristic of the p-Ge-n-GaAs heterojunction. Semiconductors. 2004. Vol. 38, no. 11, pp. 1302–1303. 41. Vartanyan R.S. Elektrofizicheskie, opticheskie i lyuministsentnye svoistva metastabil'nykh tverdykh rastvorov (Ge2)x(GaAs)1-x i geteroperekhody na ikh osnove[Electrophysical, optical and luminescent properties of metastable solid solutions (Ge2)x(GaAs)1-x and heterojunctions based on them], Dis. of cand. Phys. Math. Sc.,Leningrad, Ins. of Phys. and Tech., 1984.(In Russ.) 42. Razzakov A.Sh. Issledovaniya uslovii epitaksial'nogo rosta novykh varizonnykh tverdykh rastvorov (Ge2)1-x(ZnSe)x i ikh nekotorykh elektricheskikh, fotoelektricheskikh svoistv [Investigations of the conditions for epitaxial growth of new graded-gap solid solutions (Ge2)1-x(ZnSe)xand some of their electrical, photoelectric properties]. Dis. of cand. Phys. Math. Sc., Tashkent,Ins. of Phys. and Tech., 1998. (In Russ.) 43. Saidov A.S., Saidov M.S., Usmonov Sh.N., Rakhmonov U.Kh. Teplovol'taicheskii effekt p-Si-n-(ZnSe)1-x-y(SI2)x(GaP)y struktur [Thermal-voltaic effect of p-Si-n-(ZnSe)1-x-y(SI2)x(GaP)y structures], Geliotekhnika [Solar Engineering]. 2010,no. 1,pp. 27-29.(In Russ.) 44. Adachi S., Properties of semiconductor alloys: Group –IV, III-V and II-VI semiconductors. Japan. John Willey&Sons Ltd. 2009, pp.11-39. 45. Jacobs R.N. et. al. Role of thermal expansion matching in CdTe heteroepitaxy on highly lattice-mismatched substrates. Journal of Crystal Growth. 2008. Vol. 310(12.1). pp. 2960–2965. 46. Davlatov U.T. Geterostruktury Si-Si1-xGex, Si-Si1-xGex-GaAs, Si-(Si2)1-x(GaAs)x,(0≤x≤1), poluchennye metodom zhidkofaznoi epitaksii, ikh elektrofizicheskie i fotoelektricheskie kharakteristiki [Heterostructures Si-Si1-xGex, Si-Si1-xGex-GaAs, Si-(Si2)1-x(GaAs)x,(0≤x≤1), by liquid-phase epitaxy, their electrophysical and photoelectric characteristics], Dis. of cand. Phys. Math. Sc., Tashkent,Ins. of Phys. and Tech., 2006.(In Russ.) 47. Andreev V.M. i dr., Fotoelementy na osnove geterostruktur GaAs/Ge, poluchennye kombinatsiei metodov MOSGFE i diffuzii tsinka [Photocells based on GaAs/Ge heterostructures obtained by a combination of MOCVD and zinc diffusion methods]. Semiconductors. 2004,vol. 38, no. 3, pp. 369-373. (In Russ.) 48. Saidov A.S. et.al. Growth of (GaAs)1−x(ZnSe)x solid solution films and investigation of their structural and some photoelectric properties. Physics of the Solid State. 2011. Vol. 53, no. 10. pp. 2012–2021. 49. S.Z. Zainabidinov, A.S. Saidov, M.U. Kalanov, and A. Y. Boboev. Synthesis, structure and electro-physical properties n-GaAs-p-(GaAs)1 – x – y(Ge2)x(ZnSe)y heterostructures. Applied Solar Energy. 2019,vol. 55, no. 5,pp. 291–308. 50. Usmonov Sh. N. Anomalous temperature dependence of volt-ampere characteristics of pSi-n(Si2)1 −x (ZnSe)x structures. Applied Solar Energy. 2009. Vol. 45, no. 3, pp. 154-156. 51. Saidov A. S., Usmonov Sh.N., Kholikov K.T., Saparov D. Spektral'naya chuvstvitel'nost' tverdogo rastvora (Si2)1−x(CdS)x [Spectral sensitivity of the solid solution (Si2)1−x(CdS)x]. Pis'ma v ZhTF [Letters to JTP]. 2007, vol. 33, no. 20, pp. 5-10.(In Russ.) 52. Madaminov Kh.M. Elektrofizicheskie i fotoelektricheskie svoistva tverdykh rastvorov Si₁₋ₓSnₓ(0≤x≤0.04) [Electrophysical and photoelectric properties of Si₁₋ₓSnₓ(0≤x≤0.04) solid solutions]. Dis. of cand. Phys. Math. Sc., Tashkent,Ins. of Phys. and Tech., 2012. p. 123.(InRuss.)

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.