•  
  •  
 

Scientific Journal of Samarkand University

Abstract

In this work we consider the problem of reconstructing a function from a family of parabolas in the upper half-plane with a weight function having a singularity. The uniqueness of theorem for the solution of equation is proved and the inversion formula is derived. It is shown that the solution of the problem posed is weakly ill-posed, that is, stability estimates are obtained in spaces of finite smoothness.

First Page

11

Last Page

16

References

1. Romanov V.G. Nekotorie obratnie zadachi dlya uravneniy giperbolicheskogo tipa. Novosibirsk: Nauka, 1972. 2. Lavrentev M.M., Savelev L.Ya. Teoriya operatorov i nekorrektnie zadachi. – Novosibirsk: Izd-vo In-ta matematiki. 1999. – 702 s. 3. Lavrentev M.M. Integralnaya geometriya i obratnie zadachi // Nekorrektnie zadachi matematicheskoy fiziki i analiza. Novosibirsk: Nauka, 1984. S.81-86. 4. Lavrentev M.M., Buxgeym A.L. Ob odnom klasse zadach integralnoy geometrii // Dokl. AN SSSR. 1973. T.311, №1. S. 38-39. 5. Lavrentev M.M., Buxgeym A.L. Ob odnom klasse operatornix uravneniy pervogo roda // Funksion. analiz i yego pril. 1973. T.7. Vip.4.S.44-53. 6. Muxometov R.G. O zadache integralnoy geometrii // Matematicheskiye problemi geofiziki. Vip. 6. Ch. 2. Novosibirsk: VS SO AN SSSR, 1975. S. 212-242. 7. BegmatovAkr.X. Dva klassa slabo nekorrektnix zadach integralnoy geometrii na ploskosti // Sib. mat. jurnal. 1995. T. 36. № 2. S. 243-247. 8. BegmatovAkram H. On a class of weakly ill-posed Volterra-type of integral geometry in the three-dimensional space // J. Inverse and Ill-Posed Problems. 1995. Vol. 3. №3. P. 231-235. 9. BegmatovAkr.X. Volterovskiye zadachi integralnoy geometrii na ploskosti dlya krivix s osobennostyami // Sib. mat. jurnal. 1997. T. 38. № 4. C 723-737. 10. BegmatovAkr.X. Zadachi integralnoy geometrii po spesialnim krivim i poverxnostyam s osobennostyami v vershinax // Dokladi RAN. 1998. T. 358. № 2. S. 151-153. 11. Begmatov Akbar H. and Begmatov Akram H. Problems of integral geometry on curves and surfaces in Euclidean space // Ill-Posed and Non-Classical Problems of Mathematical Physics and Analysis, M.M. Lavrent’ev et al., Eds., Proceedings of International Conference, VSP, Utrecht-Boston, 2003, 1-18. 12. Begmatov Akram H., Ochilov Z.H. Recovering of function set by integrals along a curve in the plane // Ill-Posed and Non-Classical Problems of Mathematical Physics and Analysis, M.M. Lavrent’ev et al., Eds., Proceedings of International Conference, VSP, Utrecht-Boston, 2003, 191-198 13. BegmatovAkram X., Ochilov Z.X.Zadachi integralnoy geometrii s razrivnoy vesovoy funksiyey //Dokladi RAN.- Moskva, 2009.429.- № 3.-C. 295-297. 14. Akram H. Begmatov, M.E. Muminov, Z.H. Ochilov. The Problem of Integral Geometry of Volterra Type with a Weight Function of a Special Type. Horizon Research Publishing (HRPUB)Corporation, USA, Mathematics and statistics. Vol 3, No 5. 2015. r. 113-120. 15. GradshteynI.S., Rijik I.M.Tablitsi integralov, summ, ryadov i proizvedeniy.- M.: Fizmatgiz, 1962.- 1180 s.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.