Scientific Journal of Samarkand University


On the d- dimensional lattice 2 , 1 ,  d d Z the discrete Schrödinger operator  H with non- local potential constructed via the Dirac delta function and shift operator is considered. The existence of negative eigenvalues on the parameters of the operator is explicity derived.

First Page


Last Page



1. S. Albeverio, S. N. Lakaev, K. A. Makarov, Z. I. Muminov: The Threshold Effects for the Two-particle Hamiltonians on Lattices, Comm.Math.Phys. 262 (2006), 91--115. 2. J. Bellissard and H. Schulz-Baldes: Scattering theory for lattice operators in dimension 3  d , arXiv:1109.5459v2, 2012 3. P. Exner, P.A. Kuchment and B. Winn: On the location of spectral edges in Z-peridoc media, J. Phys. A 43 (2010), 474022 4. 4. Faria da Veiga P. A., Ioriatti L., and OʻCarroll M.: Energy-momentum spectrum of some two-particle lattice Schrödinger Hamiltonians. Phys. Rev. E (3) 66, 016130, 9 pp. (2002). 5. F. Hiroshima, I. Sasaki, T. Shirai and A. Suzuki: Note on the spectrum of discrete Schrödinger operators, J. Math-for-Industry 4 (2012), 105-108 6. S.N. Lakaev, I.N. Bozorov.: The number of bound states of one particle Hamilonian on a three-dimensional lattice. Theoretical and Mathematical physics, 158(3): 360- 376 (2009)

Included in

Mathematics Commons