•  
  •  
 

Central Asian Journal of Pediatrics

Central Asian Journal of Pediatrics

Abstract

In recent paper by the results of the conducted research the HIV encephalopathy is expressed in all HIV infected children. The staging HIV encephalopathy is correlated with the severity of immune-hematological disturbances, in particular, an increase in the concentration of natural killer cells, cells carrying apoptosis markers, reactive and antibody-producing lymphocytes, as well as activation of humoral immunity. The risk of developing symptomatic HIVE increases 5-fold with an HIV concentration in mononuclear cells above 816.5 units/103 cells (5-fold, p <0.001), as well as activation of the cellular immunity unit (2.21-fold with an increase in CD16+% above 24%, 1.84 times with an increase in CD95 +% of more than 25%, 2.3 times with an increase in reactive lymphocytes more than 5% and 1.95 times with an increase in antibody-producing lymphocytes more than 3%, p <0.001 for all factors).

First Page

87

Last Page

100

References

1. Wang H, Wolock TM, Carter A, et al. Estimates of global, regional, and national incidence, prevalence, and mortality of HIV, 1980-2015: the Global Burden of Disease Study 2015. Lancet HIV. 2016;3(8):e361–87. doi: 10.1016/S2352-3018(16)30087-X. published Online First: Epub Date. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 2. Donald KA, Hoare J, Eley B, Wilmshurst JM. Neurologic complications of pediatric human immunodeficiency virus: implications for clinical practice and management challenges in the African setting. Semin Pediatr Neurol. 2014;21(1):3–11. doi: 10.1016/j.spen.2014.01.004. published Online First: Epub Date. [PubMed] [CrossRef] [Google Scholar] 3. Saidkhodjaeva S.N., et.al "Lesion of the nervous system in HIV infection" Medicine: theory and practice, vol. 4, no. S, 2019, pp. 488-488. 4. Nachman SA, Chernoff M, Gona P, et al. Incidence of noninfectious conditions in perinatally HIV-infected children and adolescents in the HAART era. Arch Pediatr Adolesc Med. 2009;163(2):164–71. doi: 10.1001/archpedi.163.2.164. published Online First: Epub Date. [PMC free article] [PubMed] [CrossRef] [Google Scholar] 5. Shah SS, Zimmerman RA, Rorke LB, Vezina LG. Cerebrovascular complications of HIV in children. AJNR Am J Neuroradiol. 2006;17(10):1913–7. [PubMed] [Google Scholar] 6. Dahl V, Peterson J, Fuchs D, et al. : Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation. AIDS. 2014;28(15):2251–2258. 10.1097/QAD.0000000000000400 [PMC free article] [PubMed] [CrossRef] [Google Scholar] 7. Gama L, Abreu CM, Shirk EN, et al.: Reactivation of simian immunodeficiency virus reservoirs in the brain of virally suppressed macaques. AIDS. 2017;31(1):5–14.10.1097/QAD.0000000000001267 [PMC free article] [PubMed] [CrossRef] [Google Scholar] 8. Chun TW, Davey RT, Jr, Ostrowski M, et al. : Relationship between pre-existing viral reservoirs and the re-emergence of plasma viremia after discontinuation of highly active anti-retroviral therapy. Nat Med. 2000;6(7):757–61. 10.1038/77481 [PubMed] [CrossRef] [Google Scholar] 9. Dahl V, Gisslen M, Hagberg L, et al. : An example of genetically distinct HIV type 1 variants in cerebrospinal fluid and plasma during suppressive therapy. J Infect Dis. 2014;209(10):1618–22. 10.1093/infdis/jit805 [PMC free article] [PubMed] [CrossRef] [Google Scholar] 10. Burdo TH, Soulas C, Orzechowski K, et al. : Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma. PLoS Pathog. 2010;6(4):e1000842. 10.1371/journal.ppat.1000842 [PMC free article] [PubMed] [CrossRef] [Google Scholar] 11. Pierson T, McArthur J, Siliciano RF: Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu Rev Immunol. 2000;18:665–708. 10.1146/annurev.immunol.18.1.665 [PubMed] [CrossRef] [Google Scholar] 12. Valcour VG, Shiramizu BT, Sithinamsuwan P, et al. : HIV DNA and cognition in a Thai longitudinal HAART initiation cohort: the SEARCH 001 Cohort/Study.Neurology.2009;72(11):992998.10.1212/01.wnl.0000344404.12759.83[PMC free article][PubMed] [CrossRef] [Google Scholar] 13. Shiramizu B, Gartner S, Williams A, et al. :Circulating proviral HIV DNA and HIV-associated dementia. AIDS. 2005;19(1):45–52. 10.1097/00002030-200501030-00005 [PMC free article] [PubMed] [CrossRef] [Google Scholar] 14. Cysique LA, Hey-Cunningham WJ, Dermody N, et al. : Peripheral blood mononuclear cells HIV DNA levels impact intermittently on neurocognition. PLoS One. 2015;10(4):e0120488. 10.1371/journal.pone.0120488 [PMC free article] [PubMed] [CrossRef] [Google Scholar] 15. Weber C, Belge KU, von Hundelshausen P, et al. : Differential chemokine receptor expression and function in human monocyte subpopulations. J Leukoc Biol. 2000;67(5):699–704. [PubMed] [Google Scholar] 16. Thieblemont N, Weiss L, Sadeghi HM, et al. : CD14 lowCD16 high: a cytokine-producing monocyte subset which expands during human immunodeficiency virus infection. Eur J Immunol. 1995;25(12):3418–3424. 10.1002/eji.1830251232 [PubMed] [CrossRef] [Google Scholar] 17. Pulliam L, Gascon R, Stubblebine M, et al. : Unique monocyte subset in patients with AIDS dementia. Lancet. 1997;349(9053):692–695. 10.1016/S0140-6736(96)10178-1 [PubMed] [CrossRef] [Google Scholar] 18. Han J, Wang B, Han N, et al. : CD14(high)CD16(+) rather than CD14(low)CD16(+) monocytes correlate with disease progression in chronic HIV-infected patients. J Acq Immun Def Synd. 2009;52(2):553–559. 10.1097/QAI.0b013e3181c1d4fe [PubMed] [CrossRef] [Google Scholar] 19. Gelman BB, Lisinicchia JG, Morgello S, et al. : Neurovirological correlation with HIV-associated neurocognitive disorders and encephalitis in a HAART-era cohort. J Acquir Immune Defic Syndr. 2013;62(5):487–495. 10.1097/QAI.0b013e31827f1bdb [PMC free article] [PubMed] [CrossRef] [Google Scholar] 20. Williams K, Westmoreland S, Greco J, et al. : Magnetic resonance spectroscopy reveals that activated monocytes contribute to neuronal injury in SIV neuroAIDS. J Clin Invest. 2005;115(9):2534–2545. 10.1172/JCI22953 [PMC free article] [PubMed] [CrossRef] [Google Scholar] 21. Campbell JH, Burdo TH, Autissier P, et al. : Minocycline inhibition of monocyte activation correlates with neuronal protection in SIV neuroAIDS. PLoS One. 2011;6(4):e18688. 10.1371/journal.pone.0018688 [PMC free article] [PubMed] [CrossRef] [Google Scholar] 22. Kusao I, Shiramizu B, Liang CY, et al. : Cognitive performance related to HIV-1-infected monocytes.J Neuropsychiatry Clin Neurosci. 2012;24(1):71–80. 10.1176/appi.neuropsych.11050109 [PMC free article] [PubMed] [CrossRef] [Google Scholar] 23. Fischer-Smith T, Croul S, Sverstiuk AE, et al. : CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. J Neurovirol. 2001;7(6):528–541. 10.1080/135502801753248114 [PubMed] [CrossRef] [Google Scholar] 24. Kristiansen M, Graversen JH, Jacobsen C, et al. : Identification of the haemoglobin scavenger receptor. Nature. 2001;409(6817):198–201. 10.1038/35051594 [PubMed] [CrossRef] [Google Scholar] 25. Weaver LK, Hintz-Goldstein KA, Pioli PA, et al. : Pivotal advance: activation of cell surface Toll-like receptors causes shedding of the hemoglobin scavenger receptor CD163. J Leukoc Biol. 2006;80(1):26–35. 10.1189/jlb.1205756 [PubMed] [CrossRef] [Google Scholar] 26. Hintz KA, Rassias AJ, Wardwell K, et al. : Endotoxin induces rapid metalloproteinase-mediated shedding followed by up-regulation of the monocyte hemoglobin scavenger receptor CD163. J Leukoc Biol. 2002;72(4):711–717. [PubMed] [Google Scholar] 27. Moller HJ, Peterslund NA, Graversen JH, et al. : Identification of the hemoglobin scavenger receptor/CD163 as a natural soluble protein in plasma. Blood. 2002;99(1):378–380. 10.1182/blood.V99.1.378 [PubMed] [CrossRef] [Google Scholar] 28. Backé E, Schwarting R, Gerdes J, et al. : Ber-MAC3: new monoclonal antibody that defines human monocyte/macrophage differentiation antigen. J Clin Pathol. 1991;44(11):936–45. 10.1136/jcp.44.11.936[PMC free article][PubMed][CrossRef][Google Scholar] 29. Burdo TH, Lentz MR, Autissier P, et al. : Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy. J Infect Dis. 2011;204(1):154–163.10.1093/infdis/jir214 [PMC free article][PubMed] [CrossRef] [Google Scholar] 30. Buechler C, Ritter M, Orsó E, et al. : Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and anti-inflammatory stimuli. J Leukoc Biol. 2000;67(1):97–103. [PubMed] [Google Scholar] 31. Burdo TH, Weiffenbach A, Woods AP, et al. : Elevated sCD163 in plasma but not cerebrospinal fluid is a marker of neurocognitive impairment in HIV infection. AIDS. 2013;27(9):1387139510.1097/QAD.0b013e32836010bd [PMC free article] [PubMed] [CrossRef] [Google Scholar] 32. Lyons JL, Uno H, Ancuta P, et al. : Plasma sCD14 is a biomarker associated with impaired neurocognitive test performance in attention and learning domains in HIV infection. J Acquir Immune Defic Syndr. 2011;57(5):371–379.10.1097/QAI.0b013e3182237e54[PMC free article][PubMed[CrossRef] [Google Scholar]

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.