Scientific Bulletin of Namangan State University


In this article was considered the problem behaviour of the struggling among themselves two conflicting parties as the differential game. In this work, the power resource is included as an additional differential game. A resource of force supplement in the established time. At some moderate assumptions, resource of force is offered as additional differential game. The resource of force is provided with optimal strategy received, on the basis of the equation of the Lanchester square law equation and the optimal control is defined by the quantitative analysis. At the analysis and decision optimal control of a numerical example, the effectiveness of the model and the approaches are shown.

First Page


Last Page



1. Morz F. M., Kimbell Dj. Ye. Metod issledovaniya operatsiy / per. s angl. I. A. Poletaeva i K. N. Trofimova pod red. A. F. Goroxova. – M.: Sovetskoe radio, 1956. – 308 s. 2. Gavrilov V.M. Optimalne protsess v konfliktnx situatsiyax. Izd-vo «Sovetskoe radio». Moskva 1969, 160 str. 3. Boltyanskiy V.G. Optimalnoe upravlenie diskretnmi sistemami. Glavnaya redaktsiya fiziko-matematicheskoy literatur izd-va «Nauka», M., 1973. 4. Ekchian L.K. Obzor tipa Lanchestera boeve modeli dlya sovremennoy voyn. 1982, AD-A-115389. 5. Teylor Dj.G. Lanchesterskie modeli voyn, tom 1 i 2, Amerikanskoe obshestvo po issledovaniyu operatsiy, Voenne razdel prilojeniy, Arlington, Virdjiniya. 1983. 6. Xelmbold R.L. Modifikatsiya uravneniya Lanchestera. Issledovanie operatsiy, 13 (2): 1975, 857-859. 7. Li D. F. and Q. H. Chen. Troops support differential game optimization model and solution. Fire control and command control, 29(1): 2004, 41-43.8. Sheeba P. S. and D. Ghose. Optimal resource partitioning in conflicts based on Lanchester (n, 1) attrition model. In Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, Pages 14-16. 9. Sheeba P. S. and D. Ghose. Optimal resource allocation and redistribution strategy in military conflicts with Lanchester square law attrition. Naval Research Logistics, 55: 2008, 581-591. 10. Dubogray I.V., Chuev V.Yu. Diskretnaya markovskaya model dvustoronnego boya mnogochislennx gruppirovok. NAUKA i OBRAZOVANIYe, nauchnoe izdanie MGTU im. N.E. Baumana, №10, oktyabr, 2013. 11. Pismenny D. T. Konspekt lektsiy po vsshey matematike: polny kurs/ – 4-e izd. - M.: Ayris-press, 2006. 608 s.





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.