Scientific Bulletin of Namangan State University


Identpotent mathematics consists of changing simple arithmetic operations for a new set of main operations (as maximum or minimum), in this case a field of numbers exchange with idenpotent semirings and semifields

First Page


Last Page



[1] M. Akian, Trans. Amer. Math. Soc. 351, 4515 (1999). [2] J. M. Casas, M. Ladra and U. A. Rozikov, Linear Algebra Appl. 435 (4),852 (2011). [3] P. Del Moral and M. Doisy, Math. Notes. 69 (2), 232 (2001). [4] P. Del Moral and M. Doisy, Theory Probab. Appl. 43 (4), 562 (1998); 44 (2), 319 (1999). [5] R. L. Devaney, An introduction to chaotic dynamical system (Westview Press 2003). [6] R. N. Ganikhodzhayev, F. M. Mukhamedov and U. A. Rozikov, Infin. Dim. Anal., Quantum Probab. Related Topics. 14 (2), 279 (2011). [7] G. L. Litvinov and V. P. Maslov (eds.), Idempotent mathematics and mathematical physics (Vienna 2003), Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005. [8] G. L. Litvinov, J. Math. Sciences. 140 (3), 426 (2007). [9] V. P. Maslov and S. N. Samborskii (eds.), Adv. Soviet Math. 13, Amer. Math. Soc., Providence, RI, (1992). [10] W. Rudin, Pacific J. Math. 9, 195 (1959). [11] A. N. Shiryaev, Probability, 2 nd Ed. (Springer, 1996). [12] M. M. Zarichnyi, Izvestiya: Math





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.