Scientific Bulletin of Namangan State University


In this work, the protein structure of the Far-Red Elongated Hypocotyl 3 (FHY3) and Far-Red Impaired Response 1 (FAR1) Gene family members in the Gossypium Gene, as well as the differentiation and similarity of the gene have been briefly described

First Page


Last Page



1. Whitelam, G. C., Johnson, E., Peng, J., Carol, P., Anderson, M. L., Cowl, J. S., et al. (1993). Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5, 757–768. doi: 10.1105/tpc.5.7.757 2. Desnos, T., Puente, P., Whitelam, G. C., and Harberd, N. P. (2001). FHY1: aphytochrome A-specific signal transducer. Genes Dev. 15, 2980–2990. doi: 10.1101/gad.205401 3. Hiltbrunner, A., Viczian, A., Bury, E., Tscheuschler, A., Kircher, S., Toth, R., et al.(2005). Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Curr. Biol. 15, 2125–2130. doi: 10.1016/j.cub.2005.10.042 4. Zhou, Q.,Hare, P. D., Yang, S. W., Zeidler, M., Huang, L. F., and Chua, N. H. (2005). FHL is required for full phytochrome A signaling and shares overlapping functions with FHY1. Plant J. 43, 356–370. doi: 10.1111/j.1365-313X.2005.02453.x 5. Hudson, M., Ringli, C., Boylan, M. T., and Quail, P. H. (1999). The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev.13, 2017–2027. doi: 10.1101/gad.13.15.2017 6. Wang, H., and Deng, X. W. (2002). Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO J. 21, 1339–1349. doi: 10.1093/emboj/21.6.1339 7. Lin, R., Ding, L., Casola, C., Ripoll, D. R., Feschotte, C., and Wang, H. (2007). Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318, 1302–1305. doi: 10.1126/science.1146281 8. Lin, R., and Wang, H. (2004). Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light control of Arabidopsis development. Plant Physiol.136, 4010–4022. doi: 10.1104/pp.104.052191 9. Aguilar-Martinez, J. A., Uchida, N., Townsley, B., West, D. A., Yanez, A., Lynn, N., et al. (2015). Transcriptional, posttranscriptional, and posttranslational regulation of SHOOT MERISTEMLESS gene expression in Arabidopsis determines gene function in the shoot apex. Plant Physiol. 167, 424–442.doi: 10.1104/pp.114.248625 10. Li, G., Siddiqui, H., Teng, Y., Lin, R., Wan, X. Y., Li, J., et al. (2011). Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat.Cell Biol. 13, 616–622. doi: 10.1038/ncb2219 11. Joly-Lopez, Z., and Bureau, T. E. (2014). Diversity and evolution of transposable elements in Arabidopsis. Chromosome Res. 22, 203–216. doi: 10.1007/s10577-014- 9418-8 12. Feschotte, C., Jiang, N., and Wessler, S. R. (2002). Plant transposable elements:where genetics meets genomics. Nat. Rev. Genet. 3, 329–341. doi: 10.1038/nrg793 13. Makarova, K. S., Aravind, L., and Koonin, E. V. (2002). SWIM, a novel Zn-chelating domain present in bacteria, archaea and eukaryotes. Trends Biochem. Sci. 27,384– 386. doi: 10.1016/S0968-0004(02)02140-0 14. https://ncbi.nlm.nih.gov 15. https://blast.ncbi.nlm.nih.gov/Blast.cgi



Included in

Education Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.