Scientific Bulletin of Namangan State University
Abstract
In the article we consider the systems of differential equations ̇ , that depend on a set of parameters μ. For example, the vector field for the pendulum nominally depends upon two parameters: its length and the strength of gravity. Our goal is to investigate what happens to the flow of the system when parameters vary slightly. Do the properties of the orbits just change slightly, or can orbits be destroyed, created, or otherwise changed dramatically? A bifurcation occurs when there is dramatic change in the dynamics.
First Page
20
Last Page
26
References
1. A.A.Andronov, E.A.Leontovich, I.I.Gordon, A.G.Mayer, Teoriya bifurkatsiy dinamicheskix sistem na ploskosti, «Nauka», Moskva. 1967. 2. L.Perko, Differential equations and dynamical sistems, Springer 2000 3. A.N.Kolmogorov, S.B.Fomin, Elementы teorii funksiy i funksionalnogo analiza, Moskva, «Nauka». 1989.
Erratum
???????
Recommended Citation
Tukhtasinov, Muminjon and Qushaqov, Kholmurodjon Shermamatovich
(2019)
"ON SOME PROBLEMS OF THEORY
OF ONE-DIMENSIONAL
BIFURCATION,"
Scientific Bulletin of Namangan State University: Vol. 1
:
Iss.
12
, Article 5.
Available at:
https://uzjournals.edu.uz/namdu/vol1/iss12/5