•  
  •  
 

Scientific Bulletin of Namangan State University

Abstract

Identpotent mathematics consists of changing simple arithmetic operations for a new set of main operations (as maximum or minimum), in this case a field of numbers exchange with idenpotent semirings and semifields.

First Page

62

Last Page

65

References

1. M. Akian, Trans. Amer. Math. Soc. 351, 4515 (1999). 2. J. M. Casas, M. Ladra and U. A. Rozikov, Linear Algebra Appl. 435 (4),852 (2011). 3. P. Del Moral and M. Doisy, Math. Notes. 69 (2), 232 (2001). 4. P. Del Moral and M. Doisy, Theory Probab. Appl. 43 (4), 562 (1998); 44 (2), 319 (1999). 5. R. L. Devaney, An introduction to chaotic dynamical system (Westview Press 2003). 6. R. N. Ganikhodzhayev, F. M. Mukhamedov and U. A. Rozikov, Infin. Dim. Anal., Quantum Probab. Related Topics. 14 (2), 279 (2011). 7. G. L. Litvinov and V. P. Maslov (eds.), Idempotent mathematics and mathematical physics (Vienna 2003), Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005. 8. G. L. Litvinov, J. Math. Sciences. 140 (3), 426 (2007). 9. V. P. Maslov and S. N. Samborskii (eds.), Adv. Soviet Math. 13, Amer. Math. Soc., Providence, RI, (1992). 10. U. A. Rozikov and M. M. Karimov, Dinamics of Linear Maps of Idempotent Measures, Lobachevskii Journal of Mathematics, 34(1), (2013) 20–28. 11. A. N. Shiryaev, Probability, 2 nd Ed. (Springer, 1996). 12. M. M. Zarichnyi, Izvestiya: Mathematics. 74 (3), 481 (2010).

Erratum

???????

Share

COinS