•  
  •  
 

Scientific Bulletin of Namangan State University

Abstract

Oscillations of longitudinal electrical conductivity in narrow-gap semiconductors are considered. A theory was constructed of the temperature dependence of the oscillations of the longitudinal electrical conductivity in narrow-gap semiconductors taking into account the thermal broadening of Landau levels. A new formula for the oscillation of the longitudinal conductivity in narrow-gap semiconductors has been obtained. The obtained theoretical results are compared with the experimental data for Bi2Se3.

First Page

3

Last Page

12

References

1. I.M. TSidilkovskiy. Elektroni i dirki v poluprovodnikax. M., «Nauka», 1972, s. 447. 2. C. Y. Lin, S.T.Chang, C. W. Liu. Hole effective mass in strained Si1-xCx alloys.// Journal of applied physics.2004.-Vol.96, No.9, p. 5037-5041. 3. G.P.Chuiko, D.M.Stepanchikov. Geometrical way of determination of effective masses and densities of states within generalized Kildal’s model.// Physics and chemistry of solid state. 2008.-Vol.9, No.2, p.312-318. 4. L.P.Zverev, V.V.Krujaev, G.M.Minkov, O.E.Rut. O vozmojnosti ispolzovaniya tunnelьnoy spektroskopii dlya opredeleniya energeticheskoy zavisimosti effektivnoy massi v poluprovodnikax.// Pisma v JETF. 1980.-T.31, vip. 3, s. 169-172. 5. M. Ben Shalom, A. Ron, A. Palevski and Y. Dagan. Shubnikov-de Haas oscillations in SrTiO3/LaAlO3 interface // Physical Review letters, Vol.105, 206401 (2010). 6. T. Helm, M.V. Kartsovnik, M. Bartkowiak, N. Bittner, M. Lambacher, A. Erb, J. Wosnitza and R. Gross. Evolution of the Fermi Surface of the Electron-Doped high-temperature superconductor Nd2-xCexCuO4 revealed by Shubnikov-de Haas oscillations // Physical Review letters, Vol.103, 157002 (2009) 7. Ning Tang, Bo Shen, Kui Han, Fang-Chao Lu, Zhi-Xin Qin and Guo-Yi Zhang. Abnormal Shubnikov-de Haas oscillations of the two-dimensional electron gas in AlxGa1-xN/GaN heterostructures in tilted magnetic fields // Physical Review B, Vol.79, 073304 (2009) 8. M. Petrushevsky, E.Lahoud, A.Ron, E.Maniv, I.Diamant, I.Neder, S.Wiedmann and Y.Dagan. Probing the surface in Bi2Se3 using the Shubnikov-de Haas effect // Physical Review B, Vol.86, 045131 (2012) 9. N.B.Brandt, V.А.Kulbachinskiy. Kvazichastitsi v fizike kondensirovannogo sostayaniya. М., «Fizmatlit», 2007.-s.297. 10. R.Pässler. “Parameter sets due to fittings of the temperature dependencies of fundamental band gaps in semiconductors” Phys. stat. sol.(b), Vol.216, pp.975-990, 1999 y. 11. I.A.Vaynshteyn, A.F.Zatsepin, V.S.Kortov. O primenimosti empiricheskogo sootnosheniya Varshni dlya temperaturnoy zavisimosti shirinы zapreshennoy zoni // FTT, tom 41, vipusk 6. Str. 994-998, 1999 g 12. G.Gulyamov, U.I.Erkaboev, N.Yu.Sharibaev. “Effect of temperature on the thermodynamic density of states in a quantizing magnetic field”, Semiconductors, Vol. 48, No.10, pp.1323-1328, 2014. 13. G.Gulyamov, U.I.Erkaboev, N.Yu.Sharibaev. “The de Haas-van Alphen effect at high temperatures and in low magnetic fields in semiconductors”, Modern physics letters B, Vol. 30, No.7. Article ID 1650077. 7 pages, 2016 14. G.Gulyamov, U.I.Erkaboev, A.G.Gulyamov. “Influence of pressure on the temperature dependence of quantum oscillation phenomena in semiconductors”, Advances in condensed matter physics, Vol.2017. Article ID 6747853, 6 pages, 2017. 15. G.Gulyamov, U.I.Erkaboev, P.J.Baymatov. “Determination of the density of energy states in a quantizing magnetic field for model Kane” Advances in condensed matter physics, Vol.2016. Article ID 5434717. 5 pages, 2016. 16. A.N. Veys, L.N. Luk’yanova, V.A. Kutasov. Shirina zapreshennoy zoni i tip opticheskix perexodov na poroge mejzonnogo poglosheniya v tverdix rastvorax na osnove tellurida vismuta // FTT, T.54, Vыp.11, str.2051-2057. 2012 g

Erratum

???????

Share

COinS