•  
  •  
 

Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

Abstract

Quantum transport calculations are conducted using density functional theory in combination with Green's functional formalism to study the effect of external strain on the electronic transport properties of carbyne, 1D carbon allotrope, which has recently received a revival of interest due to its extraordinary mechanical, thermal and electronic properties. The current in the system increases monotonically by increasing the compressive strain, whereas the tensile strain results in the reduction of the charge transport. The obtained results are explained by spatial variations of the electrostatic potential along the carbon chain and nanoscale localization of the charge carriers. These findings can be of practical importance for carbyne-based nanotechnology development.

First Page

179

Last Page

188

References

1. Liu M., Artyukhov V.I., Lee H., Xu F., Yakobson B.I. Carbyne from first principles: chain of C atoms, a nanorod or a nanorope. ACS Nano, Vol. 7, Issue 11, 10075–10082 (2013).

2. Wang M., Lin S. Ballistic: thermal transport in carbyne and cumulene with micron-scale spectral acoustic phonon mean free path. Sci. Rep., 5, 18122 (2015).

3. Zanolli Z., Onida G., Charlier J.C. Quantum spin transport in carbon chains. ACS Nano, Vol. 4, Issue 9, 5174–5180 (2010).

4. Zhu Y., Bai H., Huang Y. Electronic property modulation of one dimensional extended graphdiyne nanowires from a first-principle crystal orbital view. Chem. Open, Vol. 5, Issue 1, 78–87 (2016).

5. Sun Q., Cai L., Wang S., Widmer R., Ju H., Zhu J., Li L., He Y., Ruffieux P., Fasel R., Xu W. Bottom-up synthesis of metalated carbyne. J. Am. Chem. Soc., Vol. 138, 1106–1109 (2016).

6. Boukhvalov D.W., Zhidkov I.S., Kurnaev E.Z., Fazio E., Cholakh S.O., D'Urso L. Atomic and electronic structures of stable linear carbon chains on Ag-nanoparticles. Carbon, Vol. 128, 296–301 (2018).

7. Zhao X., Ando Y., Liu Y., Jinno M., Suzuki T. Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube. Phys. Rev. Lett., Vol. 90, 187401 (2003).

8. Zhao C., Kitaura R., Hara H., Irle S., Shinohara H. Growth of linear carbon chains inside thin double-wall carbon nanotubes. Phys. Chem. C., Vol. 115, 13166–13170 (2011).

9. Zhang J., Feng Y., Ishiwata H., Miyata Y., Kitaura R., Dahl J.E.P., Carlson R.M.K., Shinohara H., Tomnek D. Synthesis and transformation of linear adamantine assemblies inside carbon nanotubes. ACS Nano, Vol. 6, Issue 10, 8674–8683 (2012).

10. Andrade N.F., Vasconcelos T.L., Gouvea C.P., Archanjo B.S., Achete C.A., Kim Y.A., Endo M., Fantini C., Dresselhaus M.S., Souza Filho A.G., Linear carbon chains encapsulated in multiwall carbon nanotubes: resonance Raman spectroscopy and transmission electron microscopy studies. Carbon, Vol. 90, 172–180 (2015).

11. Shi L., Rohringer P., Suenaga K., Niimi Y., Kotakoski J., Meyer J.C., Peterlik H., Wanko M., Cahangirov S., Rubio A., Lapin Z.J., Novotny L., Ayala P., Pichler T. Confined linear carbon chains as a route to bulk carbyne. Nat. Mater., Vol. 15, 634–639 (2016).

12. Heeg S., Shi L., Poulikakos L.V., Pichler T., Novotny L. Carbon Nanotube Chirality Determines Properties of Encapsulated Linear Carbon Chain. Nano Lett., Vol. 18, 5426–5431 (2018).

13. Cui H., Li Q., Qiu G., Wang J. Carbon-chain inserting effect on electronic behavior of single-walled carbon nanotubes: a density functional theory study. MRS Communications, Vol. 8, 189–193 (2018).

14. Neves W.Q., Alencar R.S., Ferreira R.S., Torres-Dias A.C., Andrade N.F., San-Miguel A., Kim Y.A., Endo M., Kim D.W., Muramatsu H., Aguiar A.L., Souza Filho A.G. Effect of pressure on the structural and electronic properties of linear carbon chains encapsulated in double wall carbon nanotubes. Carbon, Vol. 133, 446–456 (2018).

15. Shi L., Yanagi K., Cao K., Kaiser U., Ayala P., Pichler T. Extraction of Linear Carbon Chains Unravels the Role of the Carbon Nanotube Host. ACS Nano, Vol. 12, Issue 8, 8477–8484 (2018).

16. Artyukhov V.I., Liu M., Yakobson B.I. Mechanically Induced Metal Insulator Transition in Carbyne. Nano Lett., Vol. 14, 4224–4229 (2014).

17. Torre A.L., Botello-Mendez A., Baaziz W., Charlier J.-C., Banhart F. Strain-induced metal semiconductor transition observed in atomic carbon chains. Nat. Commun., 6, 6636 (2015).

18. Andrade N.F., Aguiar A.L., Kim Y.A., Endo M., Freire P.T.C., Brunetto G., Galvo D.S., Dresselhaus M.S., Souza Filho A.G. Linear carbon chains under high-pressure conditions. J. Phys. Chem. C, Vol. 119, Issue 19, 10669–10676 (2015).

19. Tojo T., Kang C.S., Hayashi T., Kim Y.A. Electronic transport properties of linear carbon chains encapsulated inside single-walled carbon nanotubes. Carbon Letters, Vol. 28, 60–65 (2018).

20. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., Vol. 77, No. 18, 3865–3868 (1996).

21. Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B, Vol. 13, No. 12, 5188–5192 (1976).

22. Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comp. Chem., Vol. 27, Issue 15, 1787–1799 (2006).

23. Büttiker M., Imry Y., Landauer R., Pinhas S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B, Vol. 31, No. 10, 6207–6215 (1985).

24. Quantum ATK 2016, Synopsys Quantum ATK (https://www.synopsys.com/silicon/quantumatk.html).

25. Romdhane F.B., Adjizian J.-J., Charlier J-C., Banhart F. Electrical transport through atomic carbon chains: The role of contacts. Carbon, Vol. 122, 92–97 (2017).

Included in

Physics Commons

Share

COinS