•  
  •  
 

Karakalpak Scientific Journal

Abstract

Based on the long-term series of satellite-retrieved PM2.5 concentrations, this study explored the spatiotemporal variation and aggregation characteristics of PM2.5 concentrations in Xinjiang from 2001 to 2016 by using standard deviational ellipse analysis and spatial autocorrelation statistics method. The result showed that the annual average PM2.5 concentrations was high in the north slope of Tianshan mountain and the western Tarim desert where High-High clusters mainly distribute. Furthermore, PM2.5 concentrations in the north slope of Tianshan mountain increased significantly from 2001 to 2016. Based on the result of GeoDetector model, population density was the most dominant factor of PM2.5 concentrations (q=0.55). With the rapid urbanization and expansion of oasis, the driving force of population density on PM2.5 concentrations are gradually decreasing. However, DEM, NSL, LCT and NDVI show the increased trend on the driving forces of PM2.5 concentrations.

First Page

138

Last Page

152

References

1. Han, X.; Liu, Y.; Gao, H.; Ma, J.; Mao, X.; Wang, Y.; Ma, X. Forecasting PM 2.5 induced male lung cancer morbidity in China using satellite retrieved PM 2.5 and spatial analysis. Science of the Total Environment 2017, s 607–608, 1009-1017. 2. Hoek; Gerard; Beelen; Rob; Krishnan; Ranjini, M.; Kaufman; Joel, D.; Peters; Annette. Long-term air pollution exposure and cardio- respiratory mortality: a;review. Environ Health 2013, 12, 43. 3. Zhu, W.; Luo, L.; Cheng, Z.; Yan, N.; Lou, S.; Ma, Y. Characteristics and contributions of biogenic secondary organic aerosol tracers to PM2.5 in Shanghai, China. Atmospheric Pollution Research 2018, 9, 179-188, doi:https://doi.org/10.1016/j.apr.2017.09.001. 4. Ping, S.; Xin, J.; An, J.; Kong, L.; Wang, B.; Wang, J.; Wang, Y.; Dan, W. The empirical relationship between PM 2.5 and AOD in Nanjing of the Yangtze River Delta. Atmospheric Pollution Research 2016, 8, 233-243. 5. Li, X.; Zhang, Q.; Zhang, Y.; Zheng, B.; Wang, K.; Chen, Y.; Wallington, T.J.; Han, W.; Shen, W.; Zhang, X. Source contributions of urban PM 2.5 in the Beijing–Tianjin–Hebei region: Changes between 2006 and 2013 and relative impacts of emissions and meteorology. Atmospheric Environment 2015, 123, 229-239. 6. Turap, Y.; Talifu, D.; Wang, X.; Abulizi, A.; Maihemuti, M.; Tursun, Y.; Ding, X.; Aierken, T.; Rekefu, S. Temporal distribution and source apportionment of PM2.5 chemical composition in Xinjiang, NW-China. Atmospheric Research 2019, 218, 257-268, doi:https://doi.org/10.1016/j.atmosres.2018.12.010. 7. Tai, A.P.K.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmospheric Environment 2010, 44, 3976-3984, doi:https://doi.org/10.1016/j.atmosenv.2010.06.060. 8. Sæbø, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Science of The Total Environment 2012, 427-428, 347-354, doi:https://doi.org/10.1016/j.scitotenv.2012.03.084. 9. Van, D.A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. Environmental Science & Technology 2016, 50, 3762. 10. Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+ Aqua land cover type yearly L3 global 500m SIN grid V006 [data set]. NASA EOSDIS Land Processes DAAC. Doi 2015, 10. 11. Schaaf, C.; Wang, Z. MCD43A3 MODIS/Terra+ Aqua BRDF/Albedo Daily L3 Global—500 m V006. NASA EOSDIS Land Processes DAAC 2015, 10. 12. Wan, Z.; Hook, S.; Hulley, G. MOD11A2 MODIS/Terra land surface temperature/emissivity 8-day L3 global 1km SIN grid V006. NASA EOSDIS Land Processes DAAC 2015, 10. 13. Didan, K. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA EOSDIS Land Processes DAAC 2015. 14. Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sensing Letters 2014, 5, 358-366. 15. Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogrammetric Engineering and Remote Sensing 1997, 63, 727-734. 16. Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-filled SRTM for the globe Version 4. available from the CGIAR-CSI SRTM 90m Database (http://srtm. csi. cgiar. org) 2008, 15, 25-54. 17. Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data 2018, 5, 180214, doi:10.1038/sdata.2018.214. 18. Tatem, A.J. WorldPop, open data for spatial demography. Scientific data 2017, 4. 19. Jian, P.; Sha, C.; Lü, H.; Liu, Y.; Wu, J. Spatiotemporal patterns of remotely sensed PM 2.5 concentration in China from 1999 to 2011. Remote Sensing of Environment 2016, 174, 109-121. 20. Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17-23, doi:10.2307/2332142. 21. Anselin, L. Local Indicators of Spatial Association—LISA. Geographical Analysis 1995, 27, 93-115, doi:10.1111/j.1538-4632.1995.tb00338.x. 22. Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. International Journal of Geographical Information Science 2010, 24, 107-127. 23. Liu, D.; Abuduwaili, J.; Lei, J.; Wu, G. Deposition rate and chemical composition of the aeolian dust from a bare saline playa, Ebinur Lake, Xinjiang, China. Water, Air, & Soil Pollution 2011, 218, 175-184. 24. Ge, Y.; Abuduwaili, J.; Ma, L.; Wu, N.; Liu, D. Potential transport pathways of dust emanating from the playa of Ebinur Lake, Xinjiang, in arid northwest China. Atmospheric Research 2016, 178-179, 196-206, doi:https://doi.org/10.1016/j.atmosres.2016.04.002.

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.