•  
  •  
 

Chemical Technology, Control and Management

Abstract

One of the urgent tasks of industrial production is improving the quality of verification of received, manufactured, and stored products, reducing energy consumption in the production of a final product. The solution to this problem is impossible without the creation of devices that control the quality indicators of materials within the limits of the permissible error. One of the most common indicators of the quality of bulk materials is moisture. In the national economy and industrial production, it is required to determine the moisture content of more than 500 different substances and materials. The paper shows the possibility of using neural networks (NN) to control the moisture content of bulk materials and gives explanations about the essence of input, output, and hidden layers, weight coefficients, etc. the number of layers of the neural network and its other parameters. A neural network with two input inputs and ten output signals is considered. Frequencies characterizing changes in capacities (dielectric constants), depending on changes in the moisture content of the test material (for example, grain) and the temperature of bulk materials, are taken as input signals. Neural network modeling is based on Kolmogorov's theorem, which makes it possible to represent arbitrary continuous sets of functions in a one-dimensional boundary (limited) numerical form on a unit segment [0, 1]. Based on the research carried out, the main parameters of neuro-models have been established, which determine the quality of training a neural network.

First Page

24

Last Page

31

DOI

https://doi.org/10.51346/tstu-02.21.4-77-0027

References

  1. M.А.Berliner, Izmereniya vlazhnosti [Moisture measurements]. Izd. 2-e, pererab. Moskva: Energiya, 1973. 400 p. (in Russian).
  2. M.V. Kulakov, Tekhnologicheskie izmereniya i pribory dlya khimicheskikh proizvodstv [Technological measurements and devices for chemical production]. Izd. 3-e, pererab. i dop. Moskva: Mashinostroenie, 1983. 424 p. (in Russian).
  3. E.Uljayev, U.M.Ubaydullayev, Sh.N.Narzullayev, and L.N.Nasimxonov, “Optimization of the sizes of the cylindrical measuring transducer”, Chemical Technology, Control and Management: Vol. 2020: Iss. 5, Article 5, 2020. DOI: https://doi.org/10.34920/2020.5-6.29-32.
  4. E.Uljaev, U.M.Ubaydullaev, Sh.N.Narzullaev, E.F.Xudoyberdiev, F.G.Haydarov, “Classification of Detectors of Capacitive Humidity Transducers of Bulk Materials”, International Journal of Advanced Science and Technology, vol. 29(11s), pp.1949 – 1953, 2020. Retrieved from http://sersc.org/journals/index.php/IJAST/article/view/21858
  5. N.R.Yusupbekov, R.A.Aliev, R.R.Aliev, A.N.Yusupbekov, Intellektual'ny'e sistemy' upravleniya i prinyatiya resheniy [Intelligent management and decision-making systems]. Tashkent: Uzbek-skaya nacional'naya e`nciklopediya, 2014, 490 p. (in Russian).
  6. V.G. Spitsyn, Yu.R. Tsoj, Predstavlenie znanij v informatsionnykh sistemakh [Knowledge representation in information systems]. Uchebnoe posobie, Tomsk: Izd-vo TPU, 2006, 146 p. (in Russian).
  7. E. Uljaev, U.M. Ubaydullaev, and Sh.N. Narzullaev, “Capacity transformer of coaxial and cylindrical form of humidity meter”, Chemical Technology, Control and Management: Vol. 2020: Iss. 4, Article 4, pp. 23-30, 2020, DOI: https://doi.org/10.34920/2020.4.23-30.
  8. E.Uljaev, Sh.N.Narzullaev, and S.M.Erkinov, “Increasing calibration accuracy of the humidity control measuring device of bulk materials”, Technical science and innovation: Vol. 2020: Iss. 3, Article 23, pp. 172-179, 2020.
  9. Uljaev E., Narzullayev S., Utkir U., Shoira S. (2022) Increasing the Accuracy of Calibration Device for Measuring the Moisture of Bulk Materials. In: Cioboată D.D. (eds) International Conference on Reliable Systems Engineering (ICoRSE) - 2021. ICoRSE 2021. Lecture Notes in Networks and Systems, vol 305. Springer, Cham. https://doi.org/10.1007/978-3-030-83368-8_20.
  10. Uljayev E., Ubaydullayev U.M., Tadjitdinov G.T., Narzullayev S. (2021) Development of Criteria for Synthesis of the Optimal Structure of Monitoring and Control Systems. In: Aliev R.A., Yusupbekov N.R., Kacprzyk J., Pedrycz W., Sadikoglu F.M. (eds) 11th World Conference “Intelligent System for Industrial Automation” (WCIS-2020). WCIS 2020. Advances in Intelligent Systems and Computing, vol 1323. Springer, Cham. https://doi.org/10.1007/978-3-030-68004-6_73E.
  11. E.Uljaev, Sh.N.Narzullaev, F.G.Xaydarov, “K voprosu razrabotki intellektualnogo kombinirovannogo ustroystva kontrolya vlajnosti sipuchix materialov”[On the issue of developing an intelligent combined device for controlling the moisture content of bulk materials], Materiali mejdunarodnoy nauchnoy konferensii «Innovatsionnie resheniya injenerno-texnologicheskix problem sovremennogo proizvodstva», vol. 2, 14-16 noyabrya 2019 g, Buxara-2019, pp.204-206. (in Russian).
  12. P.P.Mal'tsev, K.M.Ponomarev, Yu.I.Stepanov, “«Umnaya pyl'» na osnove mikrosistemnoj tekhniki” ["Smart dust" based on microsystem technology], «Intellektual'nye robototekhnicheskie sistemy – 2021»: materialy molodezh. nauch. shkoly, Taranrog.: Izd-vo TRTU, 2001, pp. 220-232. (in Russian).
  13. А.V.Gavrilov, Gibridnye intellektual'nye sistemy [Hybrid intelligent systems]. Novosibirsk: Izd-vo NGTU, 2003, 164 p. (in Russian).
  14. А.R.Marakhimov, Kh.Z.Igamberdiev, А.N.Yusupbekov, I.Kh.Siddikov, Nechetko-mnozhestvennye modeli i intellektual'noe upravlenie tekhnologicheskimi protsessami [Fuzzy-set models and intelligent process control]. Tashkent: TashGTU, 2014, 240 p. (in Russian).
  15. E.Ulzhaev, Sh.N.Narzullaev, & O.N.Norboev, “Substantiation of application of artificial neural networks for creation of humidity measuring devices”. Euro-Asia Conferences, no.1(1), pp.86–91, 2021.
  16. V.I. Pichura, “Primenenie intellektual'nykh iskusstvennykh nejronnykh setej dlya prognozirovaniya khimicheskikh pokazatelej orositel'noj vody (na primere Inguletskogo magistral'nogo kanala)” [Application of intelligent artificial neural networks for predicting the chemical parameters of irrigation water (on the example of the Ingulets main canal)]. Vodnoe khozyajstvo Rossii, no.2, 2012, pp. 17-28. (in Russian).
  17. Yu. А.Kravchenko, “Postroenie prognoznykh modelej dinamicheskikh sistem na osnove integratsii nejronnykh setej i geneticheskikh algoritmov” [Building predictive models of dynamic systems based on the integration of neural networks and genetic algorithms], Izvestiya Taganrog. gos. radiotekh. un-ta, vol. 64, no. 9, pp. 103–104, 2006. (in Russian).
  18. E. Uljayev, U.M. Ubaydullaev, Sh.N. Narzullayev, O.N. Norboyev, “Application of Expert Systems for Measuring the Humidity of Bulk Materials”, International Journal of Mechatronics and Applied Mechanics, Issue 9, pp. 131-137, 2021. dx.doi.org/10.17683/ijomam/issue9.19.
  19. A.N.Yusupbekov, J.U.Sevinov, U.F.Mamirov, T.V.Botirov, “Synthesis Algorithms for Neural Network Regulator of Dynamic System Control”. In: Aliev R.A., Kacprzyk J., Pedrycz W., Jamshidi M., Babanli M., Sadikoglu F.M. (eds) 14th International Conference on Theory and Application of Fuzzy Systems and Soft Computing – ICAFS-2020. ICAFS 2020. Advances in Intelligent Systems and Computing, vol. 1306, 2021. Springer, Cham. https://doi.org/10.1007/978-3-030-64058-3_90
  20. T.А.Gavrilova, V.F. Khoroshevskij, Bazy znanij intellektual'nykh sistem [Knowledge bases of intelligent systems]. Sankt-Peterburg: Piter, 2000, 382 p. (in Russian).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.