Chemical Technology, Control and Management


The results of the analysis of the correspondence of similarity predicates to similarity measures used in various metric methods used for signal classification and the feasibility of using similarity predicates in the construction of digital systems for solving intellectual problems, for which the simplification of computational operations is of no small importance, are presented. Some general and distinctive features of the similarity predicate are considered in comparison with the euclidean metric in relation to one-dimensional and two-dimensional spaces, and generalized to the case of n-dimensional metric spaces. The expediency of using methods based on the calculation of similarity predicates, which are more suitable for classification systems than the well-known metric methods designed for recognizing objects and signals, represented by quantitative features, has been substantiated.

First Page


Last Page





  1. A.V. Korobejnikov, “Ispol'zovanie vektora vtorichnyh priznakov pri klassifikacii signalov” [Using the secondary feature vector in signal classification], Molodoj uchenyj. no. 2 (136), pp. 118-120, 2017. (in Russian).
  2. Ja.A.Fomin, Raspoznavaniye obrazov: teoriya i primeneniye [Pattern recognition: theory and application]. Moskva: Fazis, 2012, 429 p. (in Russian).
  3. L.N.Yasnitskiy, Vvedenie v iskusstvenniy intellekt [Introduction to artificial intelligence]. Moskva: Izdat. tsentr «Akademiya», 2005, 176 p. (in Russian).
  4. P.Viola, M.J.Jones, “Rapid object detection using a boosted cascade of simple features”, IEEE Conference on Computer Vision and Pattern Recognition. –URL: http://www.vision.caltech.edu/htmlfiles/EE148-2005-Spring/pprs/viola04ijcv.pdf (data obrasch'eniya: 28.07.2020).
  5. J.J.Hopfield, “Neural networks and physical systems with emergent collective computational abilities”, Proceedings of National Academy of Sciences, vol. 79 (8), 1982. URL: http://www.pnas.org/ content/79/8/2554.full.pdf (data obrasch'eniya: 28.07.2020).
  6. А.D.Novitskaya, N.A.Zhilyak, “Object recognition methods used in the development of systems of access restriction to premises”, Trudy BGTU, no. 6, pp. 190-193, 2016.
  7. A. A.Tsvetkov,  D. K.Shorokh,  M. G.Zubareva i dr., “Algoritmy raspoznavaniya ob"ektov” [Object recognition algorithms], Tekhnicheskie nauki: problemy i perspektivy: materialy IV Mezhdunar. nauch. konf., 2016. (in Russian).
  8. A.V.Zenin, “Analiz metodov raspoznavaniya obrazov” [Analysis of pattern recognition methods], Molodoi uchenyi, no. 16 (150), pp. 125-130, 2017. - URL: https://moluch.ru/archive/150/42393/ (data obrashcheniya: 29.07.2020). (in Russian).
  9. Chernogorova, Yu. V. “Metody raspoznavaniya obrazov” [Pattern recognition methods], Molodoi uchenyi. no. 28 (132), pp. 40-43, 2016. - URL: https://moluch.ru/archive/132/36964/ (data obrashcheniya: 29.07.2020). (in Russian).
  10. T.R.Khudaiberganov, “Matematicheskie metody raspoznavaniya obrazov” [Mathematical methods of pattern recognition], Tekhnika. Tekhnologii. Inzheneriya, no. 2.1 (4.1), pp. 45-47, 2017. - URL: https://moluch.ru/th/8/archive/57/2318/ (data obrashcheniya: 29.07.2020). (in Russian).
  11. V.I.Britik, E.A.Egorova, “Vydelenie informativnykh priznakov v zadachakh raspoznavaniya obrazov” [Identification of information features in image recognition tasks], Bionika intellekta, no. 1 (68), pp. 94–100, 2008. (in Russian).
  12. L.N. Chaban, Metody i algoritmy raspoznavaniya obrazov v avtomatizirovannom deshifrirovanii dannykh distantsionnogo zondirovaniya [Methods and algorithms of pattern recognition in automated decoding of remote sensing data]. Uchebnoe posobie, Moskva: MIIGAIK, 2016, 94 p. (in Russian).
  13. Yu.A. Brodskaya, “Raspoznavanie obrazov pri zadannykh ogranicheniyakh” [Pattern recognition under specified constraints], Matematicheskie metody raspoznavaniya obrazov (MMRO-11). Doklady 11-i Vserossiiskoi konferentsii, Moskva, pp. 30-33, 2003. (in Russian).
  14. Yu.E. Gagarin, “Posledovatel'nyi algoritm raspoznavaniya ob"ektov pri stokhasticheskikh iskhodnykh dannykh” [Subsequent object recognition algorithm for stochastic source data], Matematicheskie metody raspoznavaniya obrazov (MMRO-11). Doklady 11-i Vserossiiskoi konferentsii, Moskva, pp. 49-52, 2003. (in Russian).
  15. V.S.Polyakov, S.V.Polyakov, “Ispol'zovanie psevdosploshnykh obrazov dlya identifikatsii signalov” [Using pseudo-solid images to identify signals], Molodoi uchenyi. no.18, pp. 78-80, 2017. (in Russian). - URL https://moluch.ru/archive/152/43190/
  16. P.F.Khasanov, M.M.Abdullaev, “Metody klassifikatsii signalov, osnovannye na vichislenii predikatov skhodstva” [Signal classification methods based on predicative similarity calculus], Ruk. dep. v TSNIITEHI priborostroeniya, no. 3954-pr. 87 ot 20.10.87g. (in Russian).
  17. M.M. Abdullaev, Analiz sootvetstviya predikatov skhodstva k metrikam metricheskikh metodov klassifikatsii [Analysis of the correspondence of similarity predicates to the metric of metric classification methods], Ruk. dep. v TSNIITEHI priborostroeniya, no. 3955-pr. 87 ot 20.10.87g. (in Russian).
  18. M.M.Abdullaev, “Classification of signals based on calculation of similarity predicates for application in image detection tasks”, MITA 2015, The 11-th International conference Multimedia Information Technology and Applications. June 30 – July 2, Tashkent. Uzbekistan, pp. 102-105, 2015.
  19. M.M.Abdullaev, B.M.SHamshieva, “Graf metodov klassifikacii signalov” [Graph of signal classification methods], Respublikanskaya nauchno-tekhnicheskaya konferenciya «Sovremennoe sostoyanie i perspektivy primeneniya informacionnyh tekhnologij v upravlenii». 7 - 8 sentyabrya 2015, Tashkent, pp. 108-21, 2015. (in Russian).
  20. M.M.Abdullaev, B.M.SHamshieva, G.H.Rahmanova, G.M.Abdullaeva, “Predikaty skhodstva dlya klassifikacii signalov” [Similarity predicates for signal classification], Mezhdunarodnaya nauchnaya konferenciya «INNOVATION-2015». Sbornik nauchnyh statej. 23-24 oktyabrya 2015 g, Tashkent, pp. 320-321, 2015. (in Russian).
  21. M.M.Abdullaev, H.N.Nazarov, “Structural diagram for automated search of technical solution in the design of intelligent mechatronic modules”, Ninth World Conference “Intelligent Systems for Industrial Automation”, WCIS-2016, 25-27 October 2016, Tashkent, Uzbekistan, pp. 39-44, 2016.
  22. M.M.Abdullaev, B.M.SHamshieva, Predikaty skhodstva dlya klassifikacii signalov i ih primenenie v sistemah zashchity informacii [Similarity predicates for signal classification and their application in information security systems], «Muhammad Al-Horazmij avlodlari» Ilmij amalij va ahborot tahlilij zhurnal, vol. 2(8), pp. 38-41, 2019. (in Russian).
  23. M.M. Abdullaev, “Clafssification of signals based on computing predicates of similarity”, International conference on integrated innovative development of Zarafshan region: achievements, chellenges and prospests. 27-28noyabrya 2019. Navoi, 2019. pp. 648-655. (in Russian).



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.