•  
  •  
 

Chemical Technology, Control and Management

Abstract

The article discusses the issues of preliminary processing and image filtering. One of the problems with image preprocessing is the presence of blurring and noise. The problem of highlighting the background of a moving object. Next, consider the problem of constructing a Kalman filter of block type. When using the Kalman filter to solve the adaptive filtering problem, the monitored process is the vector of optimal filter coefficients. The purpose of applying the Kalman filter is to minimize the variance of the estimate of the vector random process. Noise filtering in the form of a block filter allows to restore damaged areas of images using relative shift.

First Page

139

Last Page

150

References

1. Otsu N. A threshold selection method from gray-level histograms // IEEE Trans. Systems. Man and Cybernetics. 1979. Vol. SMC-9. № 1.

2. Kuzmin SA. Sravnitelnoe issledovanie sposobov ocenki fona v videoposledovatelostyax // Jurn. radioelektroniki. 2012. № 3. 15 s. http://jre.cplire.ru/alt/mar12/12/text.pdf.

3. T. Ko, S. Soatto, D. Estrin, "Background Subtraction on Distributions," ECCV '08. Proceedings of the 10th European Conference on Computer Vision: Part III, 2008. http://vision.ucla.edu/papers/koSE08.pdf.

4. Salimzibarov R., Razumkov A., Korobkov A. Adaptivniy metod videleniya dvijushixsya obektov. Proc. GraphiCon, 2010.

5. J. Sun, W. Zhang, X. Tang, H.-Y. Shum, "Background Cut," ECCV Proceedings, Berlin, 2006. http://bjhd.org/papers/PR/ECCV/ECCV2006/papers/3952/39520628.pdf.

6. Gosales R., Woods R. Cifrovayz obrabotka izobrajeniy.// Per. S angl.- Moskva.-Texnosfera. – 2006. —1072 s.

7. Alpatov B.A., Bloxin A.N. Modeli I algoritmy obnarujeniya b vydeleniya dvijushixsya fragmentov izobrajeniy // Avtometriya.– 1995.– № 4.– s. 100 – 104.

8. Navon E. Color image segmentation based on adaptive local thresholds / E. Navon, O. Miller, A. Averbuch // Image and Vision Computing. – 2012. – № 23. – рр. 69–85.

9. O’Gorman L. Binarization and multithresholding of document images using connectivity // CVGIP: Graphical Models and Image Processing. – 2004. – Vol. 5, № 6. – рр. 494–506.

10. Yang Y. An adaptive logical method for binarization of degraded document images / Y. Yang, H. Yan // Pattern Recognition. – 2010. – Vol. 33. – рр. 787–807.

11. David Fircite, Jan Pons. Komputernoe zrenie. Sovremenniy podhod - Computer Vision: A Modern Approach. —М.: «Wiliams», 2004. — 928 s.

12. L.Shapiro, Dj. Stokman. Komputernoe zrenie. - Computer Vision. — М.: Binom. Laboratoriya znaniy, 2006. — 752 s.

13. Vizilter Yu.V., Jeltov S.Yu., Bondarenko A.V., Osokov A.V., Morjin A.V. Obrabotka I analiz izobrajeniy v zadachah mashinnogo zreniya. –М.:Fizmatkniga, 2010. — 672 s.

14. Perona P., Malik J. Scale-space and edge detection using anisotropic diffusion // IEEE Trans. Pattern Anal. Mach. Intell.,vol.12, no.5, 1990, pp. 629-639.

15. Tomasi C., Manduchi R. Bilateral filtering for gray and color images // Proc. IEEE Int. Conf. Computer Vision, 1998, pp. 839-846.

16. Overton K., Weymouth T. A noise reducing preprocessing algorithm // Proc. IEEE Computer Science Conf. Pattern Recognition and Image Processing, Chicago, IL, 1979, pp. 498-507.

17. Fisenko V.T., Fisenko T.JU., Komp'juternaja obrabotka i raspoznavanie izobrazhenij: ucheb. posobie. - SPb: SPbGU ITMO, 2008. — 192 s.18.

18. Jane B. Cifrovaja obrabotka izobrazhenij / Perev. s angl. — M.: Tehnosfera, 2007. — 583 s.

19. Deriche R. Optimal edge detection using recursive filtering // Proc. 1st Int. Conf. Computer Vision. 1987. pp. 501–505.

20. Gruzman I.S. Cifrovaja obrabotka izobrazhenij v informacionnyh sistemah / I.S.Gruzman, V.S.Kirichuk, V.P.Kosyh, G.I.Peretjagin. – Novosibirsk: Izd-vo NGTU, 2000. —168 s.

21. Buhtojarov S.S., Priorov A.L., Apalkov I.V., Hrjashhev V.V. Primenenie perekljuchajushhihsja mediannyh filtrov dlja vosstanovlenija zashumlennyh izobrazhenij // Voprosy radiojelektroniki: serija obshhetehnicheskaja. 2006. Vyp. 2. s. 137-147.

22. Xiaowei H., Junsheng L., Yanping L., Xinhe X. A selective and adaptive image filtering approach based on impulse noise detection // Fifth World Congress on Intelligent Control and Automation (WCICA 2004). 2004. V. 5, p. 4156 - 4159.

23. Huang T.S. Bystrye algoritmy v cifrovoj obrabotke izobrazhenij: preobrazovanija i mediannye filtry. –M.: Radio i svjaz', 1984. — 224 c.

24. Youngjoo Kim&Hyochong Bang. Introduction to Kalman Filter and Its Applications.// Intech Open. Published: November 2018. https://www.intechopen.com/books/introduction-and-implementations-of-the-kalman-filter/introduction-to-kalman-filter-and-its-applications.

25. C. Chui and Chen Guanrong. Kalman Filtering with Real-Time Applications. Fifth edition (e-Book). Springer Series in Information Sciences. 2017, P. 245.

26. Sergienko A. B. Algoritmy adaptivnoj filtracii: osobennosti realizacii v Matlab.// Matematika v prilozhenijah 2003, №1(1) s. 18-28.

27. K. N. Plataniotis, D. Androutsos, and A. N. Venetsanopoulos. Color Image Processing aUsing Adaptive Vector Directional Filters. IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal Processing, Vol. 45, No. 10, October 1998. Рр.1414-1419.

28. Super-resolution image reconstruction: a technical overview / Sung Cheol Park [и др.] // Signal Processing Magazine, IEEE, 2003. – Т. 20, №. 3. –С. 21–36.

29. Elad M. Super-resolution reconstruction of continuous image sequences / M. Elad, A. Feuer // International Conference on Image Processing (ICIP 99), 1999. – Т. 3. – С. 459–463.

30. Ivankov A.JU., Sirota A.A. Blochnye algoritmy obrabotki izobrazhenij na osnove fil'tra Kalmana v zadache postroenija sverhrazreshenija // Komp'juternaja optika. 2014. 38, №1. S. 118-126.

31. Vorapoj Patanavijit. Super Resolution and Future Research Direction // AU J.T. 2009. 12 №3. P. 149-163.

32. Callico G.M., Nunez A., Liopis R.P., Sethuraman R. Low cost and real-time super-resolution over a video encoder IP. 2003. Proc. 4 th Int. Symp on Quality Electronic Design (ISQED’03), San Jose, CA, USA, 24-26 March 2003. pp. 79-84. IEEE Computer Society, Washington, DC. USA.

33. Chen Hua-Mei, Lee.S., Rao.R.M., Slamani, Mohamed-Adel, Varshney P.K. Imaging for concelealed weapon detection: a tutorial overview of development in imaging sensors and processing. 2005. IEEE signal Process. Mag. 22(2), pp. 52-61.

34. Zibetti, M.V.W., Mayer, J. 2005. Simultaneous super – resolution for video sequences. Proc. IEEE Int. Conf. on Image Processing (ICIP’05), Genova, Italy, 11-14 September 2005, vol. 1. Pp. 877-880. IEEE Signal Processing Society, Piscataway, NJ, USA.

35. Davydovskij A.G., Lihachevskij D.V., Dik S.K., JAshin K.D., Varlamova L.P., Tazhiev ZH.A. Problemy primenenija bespilotnyh letatel'nyh apparatov v obespechenii obshhestvennoj, promyshlennoj i jekologicheskoj bezopasnosti/ // Big Data and advanced Analytics. 2019g = BIG DATA i analiz vysokogo urovnja : sb. materialov V Mezhdunar. nauch.-prakt. konf. (Respublika Belarus', Minsk, 13–14 marta 2019 goda). V 2 ch. CH. 2. Str. 305-320.

36. Borman S. 2004. Topics in multiframe superresolution restoration. Doctoral Dissertation. Department of Electrical Engineering, University of Notre Dame, Notre Dame , IN, USA.

37. Park S.C., Park M.K., Kang M.G. Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine 2003, 20(3). pp.21-36.

38. Stiller C., Conrad J. Estimating motion in image sequences. IEEE Signal Processing Magazine 1999, 16(4). pp.70-91.

39. Vasil'ev K.K., Krasheninnikov V.R. Statisticheskij analiz posledovatel'nostej izobrazhenij. Monografija – M.: Radiotehnika, 2017. – 248 s.

40. Stuart Citrin, Mahmood R. Azimi-Sadjadi. A Full-Plane Block Kalman Filter for Image Restoration// IEEE Transactions on Image Processing, VOL. I, No4, October 1992.

41. Elad Michael, Feuer Arie. Restoration of a Single Superresolution Image from Several Blurred, Noisy, and Undersampled Measured Images // IEEE Transactions on Image Processing, Vol. 6, No. 12, December 1997. Pp 1646-1658.

Included in

Engineering Commons

Share

COinS