•  
  •  
 

Chemical Technology, Control and Management

Abstract

The problems of constructing stable algorithms for locally optimal stabilization of controlled dynamic objects under conditions of incomplete observations and non-measurable perturbations are considered. Algorithms for the formation of locally optimal control objects on the basis of pseudo-inversion concepts of matrices are presented. For a stable pseudo-inversion of matrices, we use the Tikhonov regularization method for extremal problems with the choice of the regularization parameter by the generalized residual principle. In determining the desired solution, we use the procedure for reducing the regularized system to a set of three diagonal systems of linear algebraic equations that are solved by the sweep method.

First Page

65

Last Page

69

References

1. Afanas'ev V.N. Upravlenie neopredelenny'mi dinamicheskimi ob`ektami. - M.: Fizmatlit, 2008. - 208 s.

2. Bobcov A.A., Py'rkin A.A. Adaptivnoe i robastnoe upravlenie s kompensaciey neopredelennostey. Uchebnoe posobie. - SPb.: NIU ITMO, 2013. - 135s.

3. Ostrovskiy G.M. Tehnicheskie sistemy' v usloviyah neopredelennosti: analiz gibkosti i optimizaciya. -M.: BINOM. Laboratoriya znaniy, 2008. - 319 s.

4. Nikiforov V.O., Ushakov A.V. Upravlenie v usloviyah neopredelennosti: chuvstvitel'nost', adaptaciya, robastnost'. - SPb: SPb GITMO (TU), 2002. - 232 s.

5. Igamberdiev H.Z., YUsupbekov A.N., Zaripov O.O. Regulyarny'e metody' ocenivaniya i upravleniya dinamicheskimi ob`ektami v usloviyah neopredelennosti. - T.: TashGTU, 2012. - 320 s.

6. Kel'mans G.K., Poznyak A.S., CHernicer A.V., Lokal'no-optimal'noe upravlenie ob`ektami s neizvestny'mi parametrami, Avtomat. i telemeh., 1992, № 10. -S. 80-93.

7. Darhovskiy B.S., Magaril-Il'yaev G.G. O sinteze sistem stabilizacii // AiT. 1990, №12. -S. 66-74.

8. Bodyanskiy E.V., Boryachok M.D. Lokal'no-optimal'noe psevdodual'noe upravlenie ob`ektami s neizvestny'mi parametrami, Avtomat. i telemeh., 1992, № 2. -S. 90-97.

9. Kogan M.M., Neymark YU.I. Ob optimal'nosti lokal'no-optimal'ny'h resheniy zadach upravleniya i fil'tracii // AiT. 1992. №4. -S. 101-110.

10. Darhovskiy B.S. Lokal'no optimal'naya stabilizaciya pri nepolnoy informacii // AiT. 1997. №4. -S. 144-154.

11. Kogan M.M., Neymark YU.I. Funkcional'ny'e vozmojnosti adaptivnogo lokal'no-optimal'nogo upravleniya // AiT. 1994. №6. -S. 94-105.

12. Kim K.S., Smagin V.I. Lokal'no-optimal'noe upravlenie diskretny'mi sistemami s zapazdy'vaniem v kanale upravleniya pri nepolnoy informacii o sostoyaniya vozmusch'eniyah // Vestnik Tomskogo gosudarstvennogo universiteta. 2016. №1(34). -S. 11-17.

13. Gantmaher F.R. Teoriya matric. -M.: Nauka, 1988. - 552 s.

14. Demmel' Dj. Vy'chislitel'naya lineynaya algebra. Teoriya i prilojeniya: Per. s angl. -M.: Mir, 2001 -430 s.

15. Verjbickiy V.M. Vy'chislitel'naya lineynaya algebra. -M.: Vy'ssh. shk., 2009. -351 s.

16. Nekorrektny'e zadachi estestvoznaniya / Pod redakciey A.N. Tihonova, A.V. Goncharskogo. -M.: Izd-vo Mosk. un-ta, 1987. - 299 s.

17. Tihonov A.N., Goncharskiy A.V., Stepanov V.V., YAgola A.G. CHislenny'e metody' resheniya nekorrektny'h zadach, M.: Nauka, 1990.

18. Leonov A.S. Reshenie nekorrektno postavlenny'h zadach: Ocherk teorii, prakticheskie algoritmy' i demonstracii. -M.: Librokom. -336 s.

19. Voevodin V.V., Kuznecov YU.A. Matricy' i vy'chisleniya. 1984. -318 s.

20. Jdanov A.I. Vvedenie v metody' resheniya nekorrektny'h zadach: -Izd. Samarskogo gos. ae`rokosmicheskogo un-ta, 2006. -87 s.

Included in

Engineering Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.