•  
  •  
 

Scientific-technical journal

Abstract

Centrifugal cyclones have been developing for 100 years, while the efficiency of all cyclones for fine dust does not increase by 80%. The widespread use of cyclones in all branches of industrial production is determined by the simplicity of the design and sufficient reliability in operation. Along with this, the process carried out in a cyclone presents a complex scientific problem that has not been solved from the standpoint of aerohydromechanics. This is confirmed by various cyclone designs. Currently, the efficiency of cyclone cleaning of technological flows does not meet the requirements of sanitary standards and largely determines the level of environmental pollution. The paper compares highly efficient centrifugal cyclones of screw and non-screw twist flow. The numerical study was carried out on the basis of the Comsol Multiphysics 5.6 software package. The v2-f model was chosen as the turbulence model. Based on the numerical data obtained, it is shown that the efficiency of a screw cyclone is significantly greater than that of a non-screw cyclone.

First Page

51

Last Page

59

References

[1] A.C. Hoffmann, M. de Groot, W. Peng, H.W.A. Dries, J. Kater, Advantages and risks in increasing cyclone separator length, AIChE J. 47 (11) (2001) 2452–2460.

[2] R.B. Xiang, K.W. Lee, Numerical study of flow field in cyclones of different height, Chem. Eng. Process. 44 (2005) 877–883.

[3] Y. Zhu, K.W. Lee, Experimental study on small cyclones operating at high flow rates, J. Aerosol Sci. 30 (1999) 1303–1315.

[4] A. Avci, I. Karagoz, Effects of flow and geometrical parameters on the collection efficiency in cyclone separators, J. Aerosol Sci. 34 (2003) 937–955.

[5] T.G. Chuah, J. Gimbun, S.Y. Choong, A CFD study of the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics, Powder Technol. 162 (2006) 126–132.

[6] A. Surmen, A. Avci, M.I. Karamangil, Prediction of the maximum-efficiency cyclone length for a cyclone with a tangential entry, Powder Technol. 207 (2011) 1–8.

[7] J.W. Lee, H.J. Yang, D.Y. Lee, Effect of the cylinder shape of a long-coned cyclone on the stable flow-field establishment, Powder Technol. 165 (2006) 30–38.

[8] C.W. Hsu, S.H. Huang, C.W. Lin, T. Hsiao, W. Lin, C. Chen, An Experimental study on performance improvement of the Stairmand cyclone design, Aerosol Air Qual. Res. 14 (2014) 1003–1016.

[9]. Кузнецов С.И., Михайлик В.Д., Русанов С.А. Моделирование работы высокоэффективного циклонноротационного пылеуловителя // Вестник ХНТУ, 2009, № 3(36), с. 81–85.

[10]. Тарасова Л.А. Повышение технологической эффективности аппаратов вихретокового типа в системах газоочистки. Дисс. … д-ра техн. наук. Москва, 2010. 34 с.

[11]. Злочевский, В.Л. Анализ формирования аэропотока в циклоне // Южно-Сибирский научный вестник. – 2015. – № 4. – С. 5–13.

[12]. M.E. Madaliev. Numerical Calculation of an Air Centrifugal Separator Based on the SARC Turbulence Model // Journal of Applied and Computational Mechanics. 6(SI), 2020, – P.1133-1140. ISSN: 2383-4536, DOI: 10.22055 /JACM. 2020.31423.1871.

[13]. Z. M. Malikov, M. E. Madaliev. Numerical Simulation of Two-Phase Flow in a Centrifugal Separator. Fluid Dynamics, 2020, Vol. 55, No. 8, pp. 1012–1028. © Pleiades Publishing, Ltd., 2020.

[14]. П. Е. Смирнов. Тестирование v2-f-модели турбулентности при расчете течения и теплообмена в канале с внезапным расширением // Инженерно-физический журнал. . ТОМ 79, №4. С. 38.

[15]. Старк С.Б. Газоочистные аппараты и установки в металлургическом производстве. - М.: Металлургия, 1990 г. - 396 стр.

[16]. Тимонин А.С. Инженерно-экологический справочник, т.2. - Калуга: изд-во Н. Бочкаревой, 2003 г. - 884 стр.

[17]. Чуянов Г.Г. Обезвоживание и пылеулавливание. - Екатеринбург, 2003 г. - 196 стр.

[18]. Швыдкий В.С. Очистка газов, справочное издание. – М.: Машиностроение, 2001, 501 с.

[19]. Штокман Е.А. Очистка воздуха.-М.: Изд. АСВ. 1999.

[20]. Patankar S.V. Numerical Heat Transfer and Fluid Flow. Taylor&Francis. ISBN 978-0-89116-522-4, 1980.

[21]. Malikov Z.M., Madaliev M.E. Mathematical modeling of a turbulent flow in a centrifugal separator. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika [Tomsk State University Journal of Mathematics and Mechanics]. 71.pp. 121–138, (2021)

[22]. Malikov Z.M, Madaliev M.E. Numerical Simulation of Two-Phase Flow in a Centrifugal Separator. Fluid Dynamics. 55(8). pp. 1012–1028 (2020).

[23]. Nazarov F.Kh., Malikov Z.M., Rakhmanov N.M. Simulation and numerical study of two-phase flow in a centrifugal dust catcher. AMSD-2019 Journal of Physics: Conference Series 1441. 012155 IOP Publishing (2020). doi:10.1088/1742-6596/1441/1/012155

[24]. Madaliev, E., Madaliev, M., Adilov, K., Pulatov, T. Comparison of turbulence models for two-phase flow in a centrifugal separator. E3S Web of Conferences, (2021), 264, 01009.

[25]. Mirzoev, A.A., Madaliev, M., Sultanbayevich, D.Y., Habibullo Ugli, A.U. Numerical modeling of non-stationary turbulent flow with double barrier based on two liquid turbulence model. 2020 International Conference on Information Science and Communications Technologies, ICISCT 2020, 2020, 9351403.

[26]. Madaliev M. "Numerical study of laminar flow in a suddenly expanding channel," Scienti琰c-technical journal: Vol. 4 : Iss. 4 , Article 6. (2021)

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.