Scientific-technical journal


In recent years, spline-function methods have been widely used to solve the problem of digital analysis and recovery of signals, and we this article is about building spline models end algorithms for digital processing of geophysical signals. As an example, local spline and natural spline interpolation models were constructed for digital processing of geophysical signals. The use of cubic basis splines in a number of tasks, for example, in digital signal processing with large gradients, resonant peaks, and outliers, gives better accuracy results.

First Page


Last Page



[1]. Zaynidinov X. N., Qo`chqarov M.A. “Modelirovaniye geofizicheskix poley lokalьnыmi parabolicheskimi splaynami” Avtomatika i programmnaya injeneriya. 2020, №1(31) -C.77-82

[2]. Zaynidinov X. N., Baxromov S.A., Qo`chqarov M.A. “Metodы modelirovaniya teplovыx poley bikubicheskimi splaynami” Avtomatika i programmnaya injeneriya. 2018. № 1(23) -C.96-103

[3]. 3. H.N. Zaynidinov, I. Yusupov, M.G.Mannopova. Applying Haar Wavelets in Tasks of Digital Processing of Two-Dimensional Signals. // International Journal of Innovative Technology and Exploring Engineering (IJITEE) (Indexed by SCOPUS), ISSN: 2278-3075, Volume-9 Issue-6, p.163-166, April 2020.

[4]. H. S. Hou and H. C. Andrews, "Cubic splines for image interpolation and digital filtering", IEEE Trans. Acoust. Speech and Signal Processing, vol. ASSP-26, no. 6, pp. 508-517, 1978..

[5]. Arxipov A.N., Jdan A.G., Sandomirskiy V.B. Tenzochuvstvitelьnostь poluprovodnikovыx plenok, soderjaщiye mejgranulьnыye barьyerы. FTP, 1974. T. 8(5). S. 1314.

[6]. Dhananjay Singh, Madhusudan Singh, Hakimjon Zaynidinov. SignalProcessing Applications Using Multidimensional Polynomial Splines // Springer Briefs in Applied Sciences,Singapore, (Indexed by EI-Compendex, SCOPUS and Springer link). ISBN-978-981-13-2238-9, Series ISBN, 10.1007/978-981-13-2239-6.

[7]. R. H. Bartels, J. C. Beatty and B. A. Barsky, Splines for Use in Computer Graphics, CA, Los Altos:Morgan Kaufmann, 1987.

[8]. Svinin S.F. Baseline splines in signal theory. SP: Science. 2003. 118, p.180

[9]. Schumaker, L. L. (2007). Spline functions: Basic theory (3rd ed.). New York: Wiley (paperback).

[10]. C. de Boor, "On calculating with B-splines", J. Approximation Theory, vol. 6, pp. 50-62, 1972.

[11]. C. de Boor, "On calculating with B-splines", J. Approximation Theory, vol. 6, pp. 50-62, 1972.

[12]. de Boor, C. (2001). A practical guide to splines. New York: Springer. Revised Edition (original edition 1978).



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.