ALTERATION IN THE CONVULSIVE EFFECT OF KYNURENINE, CORAZOL AND CAFFEINE UNDER THE ACTION OF BICUCULLINE

Saidmaxmud Mirzayev
Namangan State University

Baxodir Allaberganovich Niyazmetov
Namangan State University

Follow this and additional works at: https://uzjournals.edu.uz/namdu

Part of the Education Commons

Recommended Citation

This Article is brought to you for free and open access by 2030 Uzbekistan Research Online. It has been accepted for inclusion in Scientific Bulletin of Namangan State University by an authorized editor of 2030 Uzbekistan Research Online. For more information, please contact brownman91@mail.ru.
ALTERATION IN THE CONVULSIVE EFFECT OF KYNURENINE, CORAZOL AND CAFFEINE UNDER THE ACTION OF BICUCULLINE

Cover Page Footnote

Erratum

This article is available in Scientific Bulletin of Namangan State University: https://uzjournals.edu.uz/namdu/vol1/iss8/8
ALTERATION IN THE CONVULSIVE EFFECT OF KYNURENINE, CORAZOL AND CAFFEINE UNDER THE ACTION OF BICUCULLINE

Saidmaxmud Mirzayev, Baxodir Allaberganovich Niyazmetov
Namangan State University, Namangan

Abstract: In male mice of two strains SHR and C57BL/6, pretreatment with bicuculline (1 mg/kg, s.c.), an antagonist of GABA-A receptors, potentially the convulsant effect of pentylenetetrazole (40mg/kg, ip.) and caffeine (200mg/kg ip.) and had no effect on that of L-kynurenine (11 mg i.c.v.). Data suggest that the convulsant effect of L-kynurenine, an endogenous convulsant from neuroactive tryptophan metabolites, is not related to GABA-A receptors. Other data reported elsewhere (e.g. the antagonism of phenibut and baclofen, agonists of GABA-B receptors, to L-kynurenine) suggest that kynurenine-induced seizures are related to GABA-B receptors.

Keywords: convulsive effect, bicuculline, corazol, kinurenin, GABA-A-B receptors, caffeine.

ИЗМЕНЕНИЕ СУДОРОЖНОГО ЭФФЕКТА КИНУРЕНИНА, КОРАЗОЛА И КОФЕИНА ПОД ДЕЙСТВИЕМ БИКУКУЛЛИНА

Мирзаев Саидмахмуд, Ниязметов Баходир Аллаберганович
Наманганский государственный университет, Наманган

Аннотация: у самцов мышей двух штаммов SHR и C57BL / 6, предварительной обработки биккуллинном (1 мг / кг, подкожно), антагонистом рецепторов ГАМК-А, потенциально судорожный эффект пентилентетразола (40 мг / кг, витамины) и кофеина (200 мг / кг, витамины) и не оказывал влияния на L-кинуренин (11 мг, icv). Данные свидетельствуют о том, что судорожный эффект L-кинуренина, эндогенного судороги из нейроактивных метаболитов триптофана, не связан с рецепторами ГАМК-А. Другие данные, представленные в других источниках (например, антагонизм фенибута и баклофена, агонистов рецепторов ГАМК-B к L-кинуренину), свидетельствуют о том, что вызванные кинуренином судороги связаны с рецепторами ГАМК-B.

Ключевые слова: судорожный эффект, биккуллин, коразол, кинуренин, рецепторы ГАМК-А-В, кофеин

БИКУУЛЛИН ТАЪСИРИДА КИНУРЕНИН, КОРАЗОЛ ВА КОФЕИННИНГ КОНВУЛСИВ ТАЪСИРИНИНГ ЎЗГАРИШИ

Мирзаев Саидмахмуд, Ниязметов Баходир Аллаберганович
Наманган давлат университети, Наманган

Аннотация: SHR ва C57BL / 6 иншита штаммниг эркак сичқонларида, биккуллин (1 мг / кг, тери остига) юбориш, GABA-A рецепторлари антагонисти, пентилентетразолнинг потенциал конвульсив таъсирини (40 мг / кг, йичкирига) ва кофеин (200 мг / кг), қорин бўлишисида ва L-кинуренинда (11 мг, ий) таъсир кўргач, Далиллар шуни кўрсатадик, L-кинуренининг конвульсив таъсирини, нейроактив триптофан метаболитларидан эндоген уиланиши GABA-A рецепторлари билан бўлиш эмас. Бошқа манбаларда келтирилган бошқа матъумотлар (масалан, фенибут ва баклофеннинг
Introduction

Gamma-aminobutyric acid (GABA) is a major neurotransmitter widely distributed throughout the central nervous system (CNS). Because too much excitation can lead to irritability, restlessness, insomnia, seizures, and movement disorders, it must be balanced with inhibition. GABA—the most important inhibitory neurotransmitter in the brain—provides this inhibition, acting like a “brake” during times of runaway stress. Medications for anxiety, such as benzodiazepines, stimulate GABA receptors and induce relaxation. Either low GABA levels or decreased GABA function in the brain is associated with several psychiatric and neurological disorders, including anxiety, depression, insomnia, and epilepsy. Studies indicate GABA can improve relaxation and enhance sleep [1].

Numerous experimental studies have found that the γ-aminobutyric acid (GABA) system of the brain is important in protecting against arousal and seizures caused by excitatory neurokynurenine—the endogenous metabolites of the essential amino acid tryptophan [2]. Of the excitatory neurokynurenins, the most active are L-kynurenine (kynurenine) and quinolinic acid. Among the receptors involved in the excitatory effects of neurokynurenins, the most studied GABA receptors and excitatory amino acid receptors [2, 3]. When comparing kynurenine convulsions with convulsions caused by standard convicts (corazol, caffeine, etc.), it was found that the GABA-B receptors and dopamine (DA) receptor blockade play a leading role in the mechanism of kynurenine convulsions [2]. GABA-A receptors seem to be much less important, since even such a universal and powerful anticonvulsant, as diazepam, a typical agonist of GABA-A receptors, is much less effective in protecting against kynurenine convulsions than GABA-B receptor agonists. Experimental therapy of kynurenine convulsions [4] found that protection from them requires first of all the activation of GABA-ergic processes, for example, with the help of GABA-mimetics, and also the strengthening of DA-ergic processes by isolating DA or its predecessors.

The purpose of the study was to obtain additional information about the role of GABA-A receptors in protection against kynurenine seizures. For the analysis, the selective antagonist of the GABA-A receptor bicuculline was used, which has been widely used in recent years for this purpose [3].

Materials and research methods. The experiments were performed on male mice of two lines: outbred albinos (originating from the SHR line) and black C57BL/6 weighing 20-21 g, obtained from the Rappolovo farm near St. Petersburg. Bicuculline in the form of a solution freshly prepared on distilled water was injected subcutaneously 15 minutes before the convulsant. Solutions of corazol and caffeine were injected intraperitoneally, kynurenine into the cerebral ventricles using a semi-automatic device [2].

All preparations were obtained from “Sigma” (USA). The number of animals with typical clonicotonic convulsions (within 2 hours after the introduction of convulsants) and the number of dead animals were recorded after 2 and 24 hours. Work performed in the
Laboratory of Psychopharmacology, Bekhterev Psychoneurological Research Institute, St. Petersburg.

Results and discussion. The results of the experiments showed (table) that the preliminary administration of bicuculline significantly enhances the convulsive effect of corazol and caffeine, but not kynurenine. It should also be emphasized that convulsants are used in equally effective-minimal convulsive doses.

Table

The effect of bicuculline on the convulsive effect of kynurenine, corazol and caffeine

<table>
<thead>
<tr>
<th>Preparations</th>
<th>Amount of mice</th>
<th>Preparations</th>
<th>Amount of mice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/kg s/c i/p i/bv all with dead by convulsion</td>
<td></td>
<td>mg/kg s/c i/p i/bv all with dead by convulsion</td>
</tr>
<tr>
<td>S+ kynurenine</td>
<td>-</td>
<td>12</td>
<td>20 2 0</td>
</tr>
<tr>
<td>BCC- kynurenine</td>
<td>1</td>
<td>12</td>
<td>20 3 0</td>
</tr>
<tr>
<td>S-corazol</td>
<td>*</td>
<td>40</td>
<td>28 6 0</td>
</tr>
<tr>
<td>BCC+ corazol</td>
<td>1</td>
<td>40</td>
<td>28 20* 6*</td>
</tr>
<tr>
<td>S+ caffeine</td>
<td>-</td>
<td>200</td>
<td>30 9 1</td>
</tr>
<tr>
<td>BCC+caffeine</td>
<td>1</td>
<td>200</td>
<td>30 19* 1</td>
</tr>
</tbody>
</table>

Abbreviations: S–saline (control), BCC-bicuculline * p<0.05 (with control) s/c–subcutaneously, i/p–intraperitoneally, i/bv–inside the ventricle of the brain

Conclusions. The obtained data give reason to support the proposal [2] that GABA-A receptors, which are crucial in the mechanism of corazol and caffeine convulsions, are not involved in the mechanism of kynurenine convulsions, and mainly associated with GABA-B receptors.

REFERENCES

2. Gaston M.S., Cid M.P., Salvatierra N.A. Bicuculline, a GABA-receptor antagonist, blocked HPA axis activation induced by ghrelin under an acute stress. **Behav Brain Res.** 2017 Mar 1;320:464-472.
