THE STRATEGY OF PARALLEL PURSUIT FOR DIFFERENTIAL GAME OF THE SECOND ORDER

Bahrom Tadjiahmetovich Samatov
NamSU professor at the Department of differential equation and mathematics-physics

Umidjon Alijon o’g’li Mirzamaxmudov
NamSU master at the Department of differential equation and mathematics-physics

Follow this and additional works at: https://uzjournals.edu.uz/namdu

Part of the Physical Sciences and Mathematics Commons

Recommended Citation
Available at: https://uzjournals.edu.uz/namdu/vol1/iss5/1

This Article is brought to you for free and open access by 2030 Uzbekistan Research Online. It has been accepted for inclusion in Scientific Bulletin of Namangan State University by an authorized editor of 2030 Uzbekistan Research Online. For more information, please contact sh.erkinov@edu.uz.
THE STRATEGY OF PARALLEL PURSUIT FOR DIFFERENTIAL GAME OF THE SECOND ORDER
Samatov Bahrom Tadjiahmetovich, Inomiddinov Sardorbek Nizomiddinovich,
Mirzamahmudov Umidjon Alijon o‘g‘li
NamSU professor and masters at the Department of differential equation and mathematics-physics

Abstract. In this work is considered a differential game of the second order, when control functions of the players satisfies geometric constraints. The proposed method substantiates the parallel approach strategy in this differential game of the second order. The new sufficient solvability conditions are obtained for problem of the pursuit.

Keywords. Differential game, geometric constraint, evader, pursuer, strategy of the parallel pursuit, acceleration.

IKKINCHI TARTIBLI DIFFERENSIAL O‘YIN UCHUN PARALLEL QUVISH STRATEGIYASI
Samatov Bahrom Tadjiahmetovich, Inomiddinov Sardorbek Nizomiddinovich,
Mirzamahmudov Umidjon Alijon o‘g‘li
NamDU Differensial tenglamalar va matematik fizika kafedrasi professori va magistrantlari

Kalit so‘zlar: differensial o‘yin, geometrik chegaralanish, parallel quvish strategiyasi, quvlovchi, qochuvchi, tezlanish.

Strategiya Parallel’nogo Prеследования ДЛя Дифференциальной Игры ВтороGо ПоряNdка
Саматов Бахром Таджиахматович, Иномиддинов Сардорбек Низомиддинович,
Мирзамахмудов Умиджон Алижон угли
НамГУ кафедры Дифференциальная уравнения и математической физики профессор и магистранты.

Аннотация. В работе рассматривается дифференциальная игра второго порядка при геометрических ограничениях на управления игроков. При этом предлагается стратегия параллельного преследования для преследователя и при помощи этой стратегии решается задача преследования.

Ключевые слова: Дифференциальная игра, геометрическое ограничение, стратегия параллельного преследования, преследователь, убегающий, ускорения.

Let \(P \) and \(E \) objects with opposite aim be given in the space \(\mathbb{R}^n \) and their movements based on the following differential equations and initial conditions.
\begin{align}
P: \quad & \ddot{x} = u, \quad x_i - kx_0 = 0, \quad |u| \leq \alpha, \quad (1) \\
E: \quad & \ddot{y} = v, \quad y_i - ky_0 = 0, \quad |v| \leq \beta, \quad (2)
\end{align}

where \(x, y, u, v \in \mathbb{R}^n \); \(x \) – a position of \(P \) object in the space \(\mathbb{R}^n \), \(x_i = x(0), \ x_i = \dot{x}(0) \) – its initial position and velocity respectively at \(t = 0 \); \(u \) – being a controlled acceleration of the pursuer, mapping \(u : [0, \infty) \to \mathbb{R}^n \) and it is chosen as a measurable function with respect to \(t \). We denote a set of all measurable functions \(u(\cdot) \) such that satisfies the condition \(|u| \leq \alpha \) by \(U \). \(y \) – a position of \(E \) object in the space \(\mathbb{R}^n \), \(y_0 = y(0), \ y_i = \dot{y}(0) \) – its initial position and velocity respectively at \(t = 0 \); \(v \) – being a controlled acceleration of the evader, mapping \(v : [0, \infty) \to \mathbb{R}^n \) and it is chosen as a measurable function with respect to \(t \). We denote a set of all measurable functions \(v(\cdot) \) such that satisfies the condition \(|v| \leq \beta \) by \(V \).

Definition 1. For a trio of \((x_0, x_i, u(\cdot)) \), \(u(\cdot) \in U \), the solution of the equation (1), that is, \(x(t) = x_0 + x_i t + \int_0^t u(\tau) d\tau ds \) is called a trajectory of the pursuer on interval \(t \geq 0 \).

Definition 2. For a trio of \((y_0, y_i, v(\cdot)) \), \(v(\cdot) \in V \), the solution of the equation (2), that is, \(y(t) = y_0 + y_i t + \int_0^t v(\tau) d\tau ds \) is called a trajectory of the evader on interval \(t \geq 0 \).

Definition 3. The pursuit problem for the differential game (1) - (2) is called to be solved if there exists such control function \(u^* (\cdot) \in U \) of the pursuer for any control function \(v(\cdot) \in V \) of the evader and the following equality is carried out at some finite time \(t^* \)

\[
x(t^*) = y(t^*).
\]

Definition 4. For the problem (1)-(2), time \(T \) is called a guaranteed pursuit time if it is equal to an upper boundary of all the finite values of pursuit time \(t^* \) satisfying the equality (3).

Definition 5. For the differential game (1) - (2), the following function is called \(\Pi \)-strategy of the pursuer ([1]-[2]):

\[
u(v) = v - \lambda(v) \xi_0,
\]

where \(\lambda(v, \xi_0) = (v, \xi_0) + \sqrt{(v, \xi_0)^2 + \alpha^2 - |v|^2} \), \(\xi_0 = z_0 / |z_0| \), \((v, \xi_0) \) is the scalar product of the vectors \(v \) and \(\xi_0 \) in the space \(\mathbb{R}^n \).

Property 1. If \(\alpha \geq \beta \), then a function \(\lambda(v, \xi_0) \) is continuous, nonnegative and defined for all \(V \) such that satisfies the inequality \(|v| \leq \beta \).
Property 2. If $\alpha \geq \beta$, then the following inequality is true for the function $\lambda(v, \xi_0)$:

$$\alpha - |v| \leq \lambda(v, \xi_0) \leq \alpha + |v|.$$

Theorem. If one of the following conditions holds for the second order differential game (1) – (2), that is, 1. $\alpha = \beta$ and $k < 0$; or 2. $\alpha > \beta$ and $k \in \mathbb{R}$, then by virtue of strategy (4) a guaranteed pursuit time becomes as follows:

$$T = \begin{cases}
-z_0| + \sqrt{|z_0|^2 k^2 + 2|z_0| (\alpha - \beta)}/(\alpha - \beta), & \text{if } k \neq 0 \text{ and } \alpha > \beta, \\
-1/k, & \text{if } k < 0 \text{ and } \alpha = \beta, \\
\sqrt{2|z_0|}/(\alpha - \beta), & \text{if } k = 0 \text{ and } \alpha > \beta.
\end{cases}$$

Proof. Suppose the pursuer chooses the strategy in the form (4) when the evader chooses any control function $v(t) \in \mathbb{V}$. Then, according to the equations (1) – (2), we have the following Caratheodory’s equation:

$$\ddot{z} = -\lambda(v(t))\xi_0, \quad \dot{z}(0) - kz(0) = 0.$$

Thus the following solution will be found by the given initial conditions

$$z(t) = z_0(kt + 1) - \xi_0 \int_0^t \lambda(v(\tau), \xi_0) d\tau ds$$

or

$$|z(t)| = |z_0| (kt + 1) - \int_0^t \left((v(\tau), \xi_0) + \sqrt{(v(\tau), \xi_0)^2 + \alpha^2 - |v(\tau)|^2} \right) d\tau ds.$$

According to the properties 1-2, we will form the following inequalities

$$|z(t)| \leq |z_0| (kt + 1) - \int_0^t (\alpha - |v(\tau)|) d\tau ds \quad \Rightarrow$$

$$|z(t)| \leq |z_0| (kt + 1) + t^2 (\beta - \alpha)/2.$$

We denote

$$f(t, a, k, \alpha, \beta) = a(kt + 1) - \frac{t^2}{2} (\alpha - \beta), \quad a = |z_0|.$$

1. Let be $\alpha = \beta$.

1.1. If $k > 0$, then $f(t, a, k, \alpha, \beta) = a(kt + 1)$ and it is increasing function (Fig-1)
1.2. If \(k = 0 \), then \(f(t, a, k, \alpha, \beta) = |z_0| \) is constant function (Fig-2)

1.3. If \(k < 0 \), then the function (5) is decreasing and it equals to zero at the time \(t^* = -\frac{1}{k} \) (Fig-3)

2. Let be \(\alpha > \beta \).

2.1. If \(k > 0 \), then the function (5) is equal to zero at the time
\[
T_\alpha = \left(|z_0| k + \sqrt{|z_0|^2 k^2 + 2|z_0| (\alpha - \beta)} \right) / (\alpha - \beta) \quad \text{(Fig-4)}
\]
Maximal value of the function (5) is \(f(t_0) = \left(2|z_0| (\alpha - \beta) + |z_0|^2 k^2 \right) / 2(\alpha - \beta) \) at moment \(t_0 = |z_0| k / (\alpha - \beta) \).

2.2. If \(k < 0 \), then the function (5) decreases monotonically and this function turns to zero at time \(T_\alpha \) as in the case 2.1 (Fig-5)
2.3. If $k = 0$, then $f(t, a, k, \alpha, \beta) = a - \frac{t^2}{2}(\alpha - \beta)$ and the pursuit time equals to $T_0 = \frac{2|z_0|}{\sqrt{\alpha - \beta}}$.

In conclusion, the relation (3) is true at some time t^* according to the inequality $|z(t)| \leq |z_0|(kt + 1) + t^2(\beta - \alpha) / 2$ and properties of (5), and it is determined that a relation $t^* \leq T$ is correct, i.e., the pursuit problem is solved, which completes the proof of the Theorem.

References