ON A PROPERTY OF FRACTIONAL INTEGRO-DIFFERENTIATION OPERATORS IN THE KERNEL OF WHICH THE MEYER FUNCTION

M.Y. Qosimova, M.Y., Yusupova N.X.
Ferghana Polytechnic Institute

N Kh Yusupova
Ferghana Polytechnic Institute

Follow this and additional works at: https://uzjournals.edu.uz/ferpi

Recommended Citation
Available at: https://uzjournals.edu.uz/ferpi/vol3/iss4/7

This Article is brought to you for free and open access by 2030 Uzbekistan Research Online. It has been accepted for inclusion in Scientific-technical journal by an authorized editor of 2030 Uzbekistan Research Online. For more information, please contact sh.erkinov@edu.uz.
ON A PROPERTY OF FRACTIONAL INTEGRO-DIFFERENTIATION OPERATORS IN THE KERNEL OF WHICH THE MEYER FUNCTION

Qosimova M.Y., Yusupova N.X.
Ferghana Polytechnic Institute

Abstract. In this paper, compositions of operators are introduced and studied, in the kernel of which the Meyer function.

Key words: kernel, integral, operator, Meyer function, Mellin transform.

Пусть $a_i, b_j \in R$, $(i = 1, 6; j = 1, 5)$, $\varphi(x) \in C(0, 1) \cap L_1(0, 1)$ Справедлива следующая.

Лемма. Если

$$-1 < \sum_{j=1}^{5} b_j - \sum_{i=1}^{6} a_i < 0,$$

tо имеет место тождество

$$B_1 \left[B_2 \left[\varphi(x) \right] \right] = \varphi(x),$$

Где

$$B_1 \left[\varphi(x) \right] = \frac{d}{dx} x^{-a_6} \int_{0}^{x} G^{a_6}_{66} \left(\frac{t}{x} \right) \varphi(t) dt,$$

$$B_2 \left[\varphi(x) \right] = \frac{d}{dx} x^{-a_6} \int_{0}^{x} G^{a_6}_{66} \left(\frac{t}{x} \right) \varphi(t) dt,$$

$$G^{a_6}_{66} (...) – функция Мейера [1]$$

Доказательство. Рассмотрим выражение

48
В [\varphi(x)] = \frac{d}{dx} \int_{-\infty}^{x} G^{60}(\int_{0}^{t} \left[b_{1,2,3,4,5} a_{1,2,3,4,5} e_{1,2,3,4,5} \right] dt) \cdot \varphi(z) dz \times \int_{0}^{t} G^{60}(\frac{z}{l} \left[b_{1,2,3,4,5} a_{1,2,3,4,5} e_{1,2,3,4,5} \right] \varphi(z) dz)

(4)

Отсюда, меняя порядок интегрирования, имеем

\[B[\varphi(x)] = \frac{d}{dx} \int_{0}^{x} \varphi(z) dz \cdot \int_{z}^{\infty} G^{60}(\frac{z}{l} \left[b_{1,2,3,4,5} a_{1,2,3,4,5} e_{1,2,3,4,5} \right] \varphi(z) dz) \times \int_{0}^{t} G^{60}(\frac{z}{l} \left[b_{1,2,3,4,5} a_{1,2,3,4,5} e_{1,2,3,4,5} \right] \varphi(z) dz) dt, \]

Полагая во внутреннем интеграле \(t = xv \) и воспользовавшись формулой [2]

\[G^{nn}_{pq}(x) = G^{nn}_{pq}(\frac{1}{x} \left[b_{1,2,3,4,5} a_{1,2,3,4,5} e_{1,2,3,4,5} \right]), \]

получим

\[B[\varphi(x)] = \frac{d}{dx} \int_{0}^{x} K(\varphi(z) dz, \]

gде

\[K(\varphi) = \int_{0}^{\varphi} v^{\varphi-1} f_{1}(\sigma v) f_{2}(v) dv, \quad \sigma = \frac{x}{z}, \]

(8)

\[f_{1}(v) = \begin{cases} 0, & 0 \leq v < 1 \\ G^{60}(\frac{1}{x} \left[b_{1,2,3,4,5} a_{1,2,3,4,5} e_{1,2,3,4,5} \right]), & \varphi \geq 1 \end{cases}, \]

(9)

\[f_{2}(v) = \begin{cases} 0, & 0 \leq v < 1 \\ G^{60}(\frac{1}{x} \left[b_{1,2,3,4,5} a_{1,2,3,4,5} e_{1,2,3,4,5} \right]), & \varphi \geq 1 \end{cases}, \]

(10)

Для вычисления выражение (6) воспользуемся преобразованием Меллина [1]. На основании формулы [1]

\[x^{\delta} \int_{0}^{\infty} \xi^{\gamma} g_{1}(x \xi) g_{2}(\xi) d\xi \rightarrow g_{1}^{*}(S + \delta_{1}) g_{2}^{*}(1 - \delta_{1} + \delta_{2} - S), \]

из (8) имеем

\[K^{*}(S) \rightarrow f_{1}^{*}(S) f_{2}^{*}(a_{6} - S), \]

(11)

(12)

Далее, используя формулы [2]

\[G^{nn}_{pq}(x) = \begin{cases} p' = q', & m + n = p, \sum_{j=1}^{p}(a_{j} - b_{j}) > 0 \\ G^{nn}_{pq}(\frac{1}{x} \left[b_{1,2,3,4,5} a_{1,2,3,4,5} e_{1,2,3,4,5} \right]), & \varphi \geq 1 \end{cases}, \]

(13)

из (9) и (10) находим

\[f_{1}^{*}(S) = \begin{cases} b_{1} - S, b_{2} - S, b_{3} - S, b_{4} - S, b_{5} - S, -S \\ a_{1} - S, a_{2} - S, a_{3} - S, a_{4} - S, a_{5} - S, a_{6} - S \end{cases}, \]

(14)

\[\Re S < \min \{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, 0\} \]

(15)

Подставля (14), (15) в (12), имеем

\[\]

Scientific-technical journal (STJ FerPI, ФарПИ ИТЖ, НТЖ ФерПИ, 2020, Т.3, №4) 49
\[K^*(S) = \Gamma \left[\frac{-S}{1-S} \right], \quad S < 0, \quad (16) \]

Принимая во внимание (16) и формулу \[(z-1)^{-1} + \Gamma(z)\Gamma \left[\frac{1-C-S}{1-S} \right], \quad \text{Re} C > 0, \quad \text{Re} S < 1 - \text{Re} C, \quad (17) \]

Из (7) получим

\[B[\varphi(x)] = \frac{d}{dx} D_{0x}^{-1} \varphi(x) = D_{0x}^0 \varphi(x) \]

Отсюда следует справедливость тождество (3)

Литература

