PURSUIT PROBLEM IN MOVEMENT WITH ACCELERATION FOR
CONTROLS ON CONSTRAINT OF GRANWOLL TYPE

Umidjon Alijon o’g’li Mirzamaxmudov
NamSU master at the Department of Differential equation and mathematics-physics

Oybek Bohodir o’g’li Doliyev
FarSU master at the Department of Mathematical analysis

Olimxon Ulug’bek o’g’li Ahmedov
FarSU master at the Department of Mathematical analysis

Follow this and additional works at: https://uzjournals.edu.uz/namdu

Part of the Physical Sciences and Mathematics Commons

Recommended Citation
Mirzamaxmudov, Umidjon Alijon o’g’li; Doliyev, Oybek Bohodir o’g’li; and Ahmedov, Olimxon Ulug’bek o’g’li
Available at: https://uzjournals.edu.uz/namdu/vol1/iss3/4

This Article is brought to you for free and open access by 2030 Uzbekistan Research Online. It has been accepted for inclusion in Scientific Bulletin of Namangan State University by an authorized editor of 2030 Uzbekistan Research Online. For more information, please contact sh.erkinov@edu.uz.
PURSUIT PROBLEM IN MOVEMENT WITH ACCELERATION FOR CONTROLS ON CONSTRAINT OF GRANWOLL TYPE

Cover Page Footnote
????????

Erratum
????????

This article is available in Scientific Bulletin of Namangan State University: https://uzjournals.edu.uz/namdu/vol1/iss3/4
PURSUIT PROBLEM IN MOVEMENT WITH ACCELERATION FOR CONTROLS
ON CONSTRAINT OF GRANWOLL TYPE
Mirzamaxmudov Umidjon Alijon o‘g’li, Doliyev Oybek Bohodir o‘g’li, Ahmedov Olimxon Ulug‘bek o‘g’li
NamSU, masters at the Department of Differential equation and mathematics-physics and FarSU, masters at the Department of Mathematical analysis

Abstract. In this work is considered a differential game of the second order, when control functions of the players satisfies geometric constraints. The proposed method substantiates the parallel approach strategy in this differential game of the second order. The new sufficient solvability conditions are obtained for problem of the pursuit.

Keywords. Differential game, geometric constraint, evader, pursuer, strategy of the parallel pursuit, acceleration.

BOSHQARUVLARI GRONUOLL CHEGARALANISHGA EGA
TEZLANISHLI HARAKATDA TUTISH MASALASI
Mirzamaxmudov Umidjon Alijon o‘g’li, Doliyev Oybek Bahodir o‘g’li, Ahmedov Olimxon Ulug‘bek o‘g’li
NamDU Differensial tenglamalar va matematik fizika kafedrasi va FarDU Matematik analiz kafedrasi magistrantlari

Kalit so‘zlar: Differensial o‘yin, geometrik chegaralanish, parallel quvish strategiyasi, quvlovchi, qochuvchi, tezlanish, Granoull chegaralanishli.

ЗАДАЧА ПЕРЕХВАТА ПРИ ДВИЖЕНИИ СО УСКОРЕНИЕМ И С
ОГРАНИЧЕНИЯМИ ГРОНУОЛЛА
Мирзамахмудов Умиджон Алижон ууги, Долиев Ойбек Баходир ууги, Ахмедов Олимхон Улугбек ууги
Магистранты НамГУ кафедры Дифференциальная уравнения и математической физики и ФарГУ кафедры математического анализа

Аннотация. В работе рассматривается дифференциальная игра второго порядка при ограничениях Гронуолла на управления игроков. При этом предлагается стратегия параллельного преследования для преследователя и при помощи этой стратегии решается задача преследования.
Ключевые слова: Дифференциальная игра, ограничение Гронуолла, стратегия параллельного преследования, преследователь, убегающий, ускорения.

Let \(P \) and \(E \) objects with opposite aim be given in the space \(\mathbb{R}^n \) and their movements are based on the following differential equations and initial conditions

\begin{align*}
P: \quad & \dot{x} = u, \quad x_1 - kx_0 = 0, \quad |u(t)|^2 \leq \rho^2 + 2l \int_0^t |u(s)|^2 \, ds, (1) \\
E: \quad & \dot{y} = v, \quad y_1 - ky_0 = 0, \quad |v(t)|^2 \leq \sigma^2 + 2l \int_0^t |v(s)|^2 \, ds, (2)
\end{align*}

where \(x, y, u, v \in \mathbb{R}^n \); \(x \) – a position of \(P \) object in the space \(\mathbb{R}^n \), \(x_0 = x(0), x_1 = \dot{x}(0) \) – its initial position and velocity respectively at \(t = 0 \); \(u \) – a controlled acceleration of the pursuer, mapping \(u : [0, \infty) \to \mathbb{R}^n \) and it is chosen as a measurable function with respect to \(t \); we denote a set of all measurable functions \(u(\cdot) \) such that satisfies the condition \(|u(t)|^2 \leq \rho^2 + 2l \int_0^t |u(s)|^2 \, ds \) by \(G_P \).

\(y \) – a position of \(E \) object in \(\mathbb{R}^n \) space, \(y_0 = y(0), y_1 = \dot{y}(0) \) – its initial position and velocity respectively at \(t = 0 \); \(v \) – a controlled acceleration of the evader, mapping \(v : [0, \infty) \to \mathbb{R}^n \) and it is chosen as a measurable function with respect to \(t \); we denote a set of all measurable functions \(v(\cdot) \) such that satisfies the condition \(|v(t)|^2 \leq \sigma^2 + 2l \int_0^t |v(s)|^2 \, ds \) by \(G_E \).

Definition 1. For a trio of \((x_0, x_1, u(\cdot)), u(\cdot) \in G_P \), the solution of the equation (1), that is, \(x(t) = x_0 + x_1 t + \int_0^t \int_0^s u(\tau) d\tau ds \) is called a trajectory of the pursuer on interval \(t \geq 0 \).

Definition 2. For a trio of \((y_0, y_1, v(\cdot)), v(\cdot) \in G_E \), the solution of the equation (2), that is, \(y(t) = y_0 + y_1 t + \int_0^t \int_0^s v(\tau) d\tau ds \) is called a trajectory of the evader on interval \(t \geq 0 \).
Definition 3. The pursuit problem for the differential game (1) - (2) is called to be solved if there exists such control function $u^* (\cdot) \in G_p$ of the pursuer for any control function $v(\cdot) \in G_E$ of the evader and the following equality holds at some finite time t^*

$$x(t^*) = y(t^*). \quad (3)$$

Definition 4. For the problem (1)-(2), time T is called a guaranteed pursuit time if it is equal to an upper boundary of all the finite values of pursuit time t^* which satisfies the equality (3).

Definition 5. For the differential game (1) - (2), the following function is called Π-strategy of the pursuer ([3]-[4]):

$$u(v) = v - \lambda(v) \xi_0, \quad (4)$$

where $\lambda(v) = \left(v, \xi_0 \right) + \sqrt{(v, \xi_0)^2 + \delta e^{2lt}}, \quad \xi_0 = \frac{z_0}{|z_0|}, \quad \delta = \rho^2 - \sigma^2 \geq 0$,

(v, ξ_0) is the scalar product of vectors V and ξ_0 in the space \mathbb{R}^n.

Lemma 1 (Gronwall). Suppose a mapping $\varphi(t) : [0, \infty) \rightarrow \mathbb{R}^n$ is bounded, non-negative and measurable function. Moreover, $l \geq 0$ and $\rho > 0$ are constant and for the given if an inequality $|\varphi(t)|^2 \leq \rho^2 + 2l \int_0^t |\varphi(s)|^2 ds$ holds, then a relation $\varphi(t) \leq \rho e^{lt}$ is always true.

Lemma 2. If $\rho \geq \sigma$, then the following inequality is true for the function $\lambda(v, \xi_0)$:

$$e^{lt} (\rho - \sigma) \leq \lambda(v, \xi_0) \leq e^{lt} (\rho + \sigma).$$

Theorem. If for the second order differential game (1) - (2) with Gronwall constraint a condition $\rho > \sigma$ is true, then the pursuit problem is solved by Π-strategy (4) on interval $(0, t)$ and an approach function between the objects becomes as follows:

$$f(l,t,|z_0|,\rho,\sigma,k) = |z_0| (kt + 1) - \frac{\rho - \sigma}{l^2} e^{lt} + \frac{\rho - \sigma}{l^2} + \frac{\rho - \sigma}{l} t$$

Proof. Suppose the pursuer chooses a strategy in the form (4) when the evader chooses any control function $v(\cdot) \in G_E$. Then according to the equations (1) and (2) we define the following Caratheodory's equation

$$\ddot{z} = -\lambda(v(t)) \xi_0, \quad \dot{z}(0) - k z(0) = 0,$$
Hence the following solution will be found by the given initial conditions

\[z(t) = z_0 \left(kt + 1 \right) - \xi_0 \int_0^t \int_0^s \lambda(v(\tau), \xi_0) d\tau ds \]

or

\[|z(t)| = |z_0| \left(kt + 1 \right) - \int_0^t \int_0^s \left(v, \xi_0 \right) + \sqrt{\left(v, \xi_0 \right)^2 + \delta e^{2\tau}} d\tau ds \cdot \]

We form the following inequalities in relation to Lemma 1

\[|z(t)| \leq |z_0| \left(kt + 1 \right) - \int_0^t \int_0^s e^{lt} \left(\rho - \sigma \right) d\tau ds \Rightarrow \]

\[|z(t)| \leq |z_0| \left(kt + 1 \right) - \frac{\rho - \sigma}{l^2} e^{lt} + \frac{\rho - \sigma}{l^2} + \frac{\rho - \sigma}{l} t \]

We denote

\[f(l,t,|z_0|, \rho, \sigma, k) = |z_0| \left(kt + 1 \right) - \frac{\rho - \sigma}{l^2} e^{lt} + \frac{\rho - \sigma}{l^2} + \frac{\rho - \sigma}{l} t \] \quad \text{(5)}

Define a positive solution \(t^* \) such that the function (5) equals to zero

\[\frac{\rho - \sigma}{l^2} e^{lt} = \left| z_0 \right| \left(kt + 1 \right) + \frac{\rho - \sigma}{l^2} + \frac{\rho - \sigma}{l} t \]

We will form the following equation by simplifying

\[e^{lt} = t \left(\frac{\left| z_0 \right| k l^2}{\rho - \sigma} + 1 \right) + \frac{\left| z_0 \right| l^2}{\rho - \sigma} + 1 \]

where \(A = \frac{\left| z_0 \right| k l^2}{\rho - \sigma} + 1 \), \(B = \frac{\left| z_0 \right| l^2}{\rho - \sigma} + 1 \), \(B > 1 \). Thus, we have the following equation

\[e^{lt} = At + B \] \quad \text{(6)}

In order to define a pursuit time we will consider some cases of the equation (5).

1. Let be \(A < 0 \Rightarrow k < \frac{\sigma - \rho}{\left| z_0 \right| l} \). Then the equation (5) has a unique positive solution \(t^* \) and this solution is a pursuit time. (Fig-1)
2. Let be $A = 0 \implies k = \frac{\sigma - \rho}{|z_0|l}$. Then a solution of the equation (5) is

$$t^* = \frac{\ln \left(\frac{|z_0|^2}{\rho - \sigma} + 1 \right)}{l}.$$ (Fig-2)

3. Let be $A > 0 \implies k > \frac{\sigma - \rho}{|z_0|l}$. Then the equation (5) has a positive solution t^* (Fig-3)

In conclusion, the relation (3) is true at some time t^* according to the inequality $|z(t)| \leq f(k, t, \rho, \sigma, l, |z_0|)$ and properties of (5), and it is determined that a relation
$t^* \leq T$ is correct, i.e., the pursuit problem is solved, which completes the proof of the Theorem.

References