AMPLIFICATION OF PHOTOCONDUCTIVITY OF ZnSe/ZnO:O NANOHETEROSTRUCTURES AFTER REACTOR IRRADIATION

D. Elmurotova
Tashkent State technical University named after Islam Karimov, dilnoza@inp.uz

E. Ibragimova
Academy of Sciences of the Republic of the Uzbekistan Institute of Nuclear Physics

S. Turdieva
Karshi Engineering and Economics Institute

M. Mussaeva
Academy of Sciences of the Republic of the Uzbekistan Institute of Nuclear Physics

Follow this and additional works at: https://uzjournals.edu.uz/semiconductors

Recommended Citation

This Article is brought to you for free and open access by 2030 Uzbekistan Research Online. It has been accepted for inclusion in *Euroasian Journal of Semiconductors Science and Engineering* by an authorized editor of 2030 Uzbekistan Research Online. For more information, please contact sh.erkinov@edu.uz.
AMPLIFICATION OF PHOTOCONDUCTIVITY OF ZnSe/ZnO:O NANOHETEROSTRUCTURES AFTER REACTOR IRRADIATION

D. Elmurotova¹, E. Ibragimova², S. Turdieva³, M. Mussaeva²

¹Tashkent State technical University named after Islam Karimov, Tashkent, Uzbekistan
²Academy of Sciences of the Republic of the Uzbekistan Institute of Nuclear Physics, Tashkent, Uzbekistan
³Karshi Engineering and Economics Institute, Karshi, Uzbekistan

email - dilnoza@inp.uz, dilnoza_elmurodova@mail.ru

Abstract. The possibility of radiation enhancing the photoconductivity of ZnSe/ZnO:O nanoheterostructures up to 10^{-6} Ohm$^{-1}$ with the formation of a photoconductor structure, concentration of photoelectrons up to $N_e=2.7 \times 10^{17}$ cm$^{-3}$ associated with the formation of resonance levels: $\Gamma_{6v}^{-5.76}$ eV, $L_{1,3v}^{-4.85}$ eV, $Zn_i^{-3.34}$ eV, $O_{Se}^{-3.13}$ eV and $X^{-2.72}$ eV, which is of interest for the manufacture of semiconductor scintillation and photo-detectors.

Keywords: nanoheterostructure, photovolt-ampere characteristic, photoconductivity, resonance level.

A photosensitive structure based on ZnSe single crystals, ZnO/ZnSe hetero-nanocoils, n-ZnO/p-ZnSe type II heterostructures have high photocatalytic activity and are used as photodetectors from 355 to 638 nm [1-3]. The previously performed X-ray diffraction analysis showed that the ZnSe/ZnO: O nanoheterostructure (NHS) has ZnO nanocrystalites up to 27 nm in size, and the photoconductivity $\sigma_{PC}=+0.71 \times 10^{-10}$ and -0.56×10^{-10} [2]. However, the effect of reactor radiation on the photoelectric and optical properties of NHS has not been studied.

The aim of the study is to study the photoelectric characteristics, determine the energy and population of the levels of the electronic structure from the optical absorption of ZnSe/ZnO:O NHS before and after reactor irradiation.

The object of the research is scintillator crystals heat-treated in an oxidizing environment ZnSe: O grown by the Bridgman method at the Research Institute of Monocrystals (Kharkov, Ukraine).

Research methods

Optical density spectra were measured on an SF-56A (LOMO) spectral instrument at $\lambda=190-1100$ nm. Table 1 shows the optical densities (D) at the maxima of absorption bands and transition energies. The concentration of optical centers N (cm$^{-3}$) responsible for the absorption band was calculated using the Smakula formula:

$$N = 1.28 \times 10^{17} \frac{n}{(n^2 + 2)^{1.5}} \cdot \frac{K_m H}{f};$$

(1)

where n is the refractive index for the wavelength corresponding to the maximum of the absorption band, in the case of E_g - the band for the ZnSe crystal $n = 2.6645$; f is the oscillator strength for transitions involving the zone is equal to 1; H is the half-width of the band, (eV); K_m is
the absorption coefficient at the maximum of the band (cm$^{-1}$); N_{e_g} is the concentration of electrons at the E_g level.

Photo-volt-ampere characteristics - were measured by two contact method on standard devices. We studied the dependences of the dark and photocurrent (when illuminated by an incandescent lamp) on the applied external voltage, of both polarities at 300 K.

Table 2 shows the electro-optical characteristics of the NHS before and after irradiation. Photoconductivity was determined from the ratio, where R_l and R_d are resistance to light and dark (Ohm).

$$\sigma_{PC} = (R_d - R_l)/R_d R_l$$ (2)

NGS were irradiated in the core of the WWR-SM nuclear reactor (10 MV): by the flux of γ-radiation from the isotope 17O with energies up to 7 MeV in the thermal column with fluences 3.3×10^{15}, 6.6×10^{16} and 3.3×10^{17} cm$^{-2}$ and fast neutrons with the integral flux (fluences) 1.3×10^{15} cm$^{-2}$ to 5×10^{16} cm$^{-2}$. At these doses, the formation of electron-positron pairs, Compton electrons, and Frenkel pairs was expected, as well as the ordering of radiation defects from excited nuclei of uranium and O fission fragments with high energies up to 7 MeV and from fast neutron fluxes.

Optical density:

![Fig. 1. Spectra of OP NHS ZnSe / ZnO: O before (1) and after (2, 3, 4) reactor irradiation at the indicated fluences](image)

Table 1

<table>
<thead>
<tr>
<th></th>
<th>before and after irradiation of γ-rays of the reactor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>3.3-1015 cm$^{-2}$ 6.6-1016 cm$^{-2}$ 3.3-1017 cm$^{-2}$</td>
</tr>
<tr>
<td>$\Gamma_{6\nu}$</td>
<td>6.04 $\Theta V_{3,8 \nu} = 16 \times 10^{16}$ cm$^{-3}$</td>
</tr>
<tr>
<td>$M_{1\nu}$</td>
<td>5.16 $\Theta V_{3,8}$ $N_{M_{1\nu}}=9.6 \times 10^{16}$ cm$^{-3}$</td>
</tr>
<tr>
<td>$L_{1,3\nu}$</td>
<td>4.85 $\Theta V_{3,6}$ $N_{L_{1,3\nu}}=1.6 \times 10^{16}$ cm$^{-3}$</td>
</tr>
<tr>
<td>$Z_{2\nu}$</td>
<td>3.39 $\Theta V_{3,53}$ $N_{Z_{2\nu}}=0.79 \times 10^{16}$ cm$^{-3}$</td>
</tr>
<tr>
<td>$Z_{2\nu}$</td>
<td>3.39 $\Theta V_{3,53}$ $N_{Z_{2\nu}}=0.7 \times 10^{16}$ cm$^{-3}$</td>
</tr>
</tbody>
</table>
Photoelectric properties: In fig. 2 (A) and table 2 shows the electrophysical characteristics of the ZnSe/ZnO:O NHS in the dark and under illumination, where before the irradiation the NHS was linear, i.e. ohmic I - V characteristic with low σ_{PC}=+0.71·10^{-10} Ohm$^{-1}$ and -0.56·10^{-10} Ohm$^{-1}$. Irradiation in the thermal column of a nuclear reactor at fluences $3.3\cdot10^{15}$ cm$^{-2}$ (3, 4); $6.6\cdot10^{16}$ cm$^{-2}$ (5, 6); $3.3\cdot10^{17}$ cm$^{-2}$ (7, 8); (C) fast neutrons $1.3\cdot10^{15}$ cm$^{-2}$ (3, 4); 10^{16} cm$^{-2}$ (5, 6); $5.4\cdot10^{16}$ cm$^{-2}$ (7, 8) led to an increase in σ_{PC} to 10^{-8} Ohm$^{-1}$ with the formation of the photosensitive of surface state density, which is associated with the formation of radiation defects.
Table 2

Dark (ρ_T) and light (ρ_C) resistivity, polarization (+ R/-R) and photoconductivity (σ_{PC}) NHS.

<table>
<thead>
<tr>
<th>Samples and types of exposures</th>
<th>ρ_T, 10^9 Ohm·cm</th>
<th>$+R/$ R</th>
<th>ρ_C, 10^9 Ohm·cm</th>
<th>$+R/$ R</th>
<th>σ_{PC}, 10^{10} Ohm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unirradiated</td>
<td>+4.8; -5.5</td>
<td>0.87</td>
<td>+1.1; -1.35</td>
<td>0.81</td>
<td>+0.71; -0.56</td>
</tr>
<tr>
<td>γ-reactor flux</td>
<td>3.3·10^{15} cm$^{-2}$</td>
<td>+4.5; -9.5</td>
<td>0.47</td>
<td>+0.63; -0.76</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>6.6·10^{16} cm$^{-2}$</td>
<td>+13; -13</td>
<td>1</td>
<td>+0.2; -0.3</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>3.3·10^{17} cm$^{-2}$</td>
<td>+1.1; -4.8</td>
<td>0.23</td>
<td>+0.037; -0.04</td>
<td>0.92</td>
</tr>
<tr>
<td>Fast neutrons</td>
<td>1.3·10^{15}</td>
<td>+0.32;</td>
<td>0.26</td>
<td>+0.0009;</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.2</td>
<td></td>
<td>-0.002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1016</td>
<td>+15; -37</td>
<td>0.41</td>
<td>+0.12; 0.3</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.4·10^{16}</td>
<td>+37; -38</td>
<td>0.98</td>
<td>+3.5; -4.3</td>
<td>0.81</td>
</tr>
</tbody>
</table>

In fig. 1. (A and B) and table. 1. shows the optical density spectra D of ZnSe/ZnO: O NHS before (curve 1) and after reactor irradiation (curves 2, 3, 4). All curves obtained are reproducible. It is seen that the maximum D at E_g=2.58 eV (480 nm) is D (E_g)=1.62. The calculation of the population per E_g (or the concentration of photoconductivity electrons) by the Smakula formula (1) gives the value $N_{se}=1.26·10^{16}$ cm$^{-3}$. The gamma radiation of the reactor with a flow of $3.3·10^{15}$ cm$^{-2}$ led to the formation of radiation level $L_{1.3v}$ (255 nm) and O_{Se} (395 nm), while E_g decreased by 0.06 eV (curve 2 in Fig. 1. (A)), which corresponds to the binding energy of the ZnO exciton [1], where an increase in the flux to $6.6·10^{16}$ cm$^{-2}$ led to the destruction of the O_{Se} reactor but formed the Znii reactor (365 nm) (curve 3), a further increase in the flux to $3.3·10^{17}$ cm$^{-2}$ formed split Γ_{6v}-6.04 eV, M_{4v}-5.16 eV and narrow radiation level $-Zn_i$, while O_{Se} was restored, E_g increased by 0.02 eV and N_e to $2.75·10^{17}$ cm$^{-3}$. Irradiation with fast neutrons of NHS ZnSe/ZnO: O at a fluence of 10^{15} cm$^{-2}$ (Fig. 1. B and Table 1) led to the formation of radiation level $L_{1.3v}$ and X-2.72 eV, an increase in $N_e=2.6·10^{16}$ cm$^{-3}$, where a decrease in E_g by 0.06 eV (curve 2) was observed, and an increase in the fluence up to 10^{16} cm$^{-2}$ formed radiation level Γ_{6v}, and at a fluence of up to $5·10^{16}$ cm$^{-2}$ radiation level $L_{1.3v}$. Irradiation with fast neutrons with a fluence of $1.3·10^{15}$ cm$^{-2}$ led to the formation of RU $L_{1.3v}$ and X, a decrease in E_g by 0.06 eV, an increase in σ_{PC} to 10^6 Ohm$^{-1}$, and a crooked photo-I–V characteristic of the photosemiconductor structure. An increase in the fluence to 10^{16} cm$^{-2}$ also led to an increase in σ_{PC}, but an increase in the blocking photo-semiconductor barrier of the photo-I-V characteristics was observed, where an increase in the fluence to $5.4·10^{16}$ cm$^{-2}$ led to the destruction of such properties.

Thus, it has been shown that reactor gamma irradiation of ZnSe/ZnO:O NHS led to the formation of radiation levels associated with the formation of photo-surface state density and an increase in σ_{PC} to 10^6 Ohm$^{-1}$; The observed decrease in light scattering by delocalized carriers in the region of 500-1100 nm is consistent with a significant increase in photoresistance, which is of practical interest for the manufacture of photodetectors and photodiodes.

This work was supported by the grant OT-F2-26 MIR RUz.
References

