MODELLING AND ANALYSIS OF VIVALDI ANTENNA STRUCTURE DESIGN FOR BROADBAND COMMUNICATION SYSTEMS

Urgench Branch of Tashkent University of Information Technologies named after Muhammad Al-Khwarizmi

Abstract
In this paper, a method of designing a Vivaldi type phased array antenna (PAA) which operates at S-band (6–90 GHz) is presented and good active S-parameter characteristics. An antipodal Vivaldi antenna with a compact parasitic patch to overcome radiation performance degradations in the high-frequency band is proposed. For this purpose, a double asymmetric trapezoidal parasitic patch is designed and added to the aperture of an antipodal Vivaldi antenna. The proposed antenna has a peak gain greater than 7 dBi over the frequency range of 6–90 GHz.

Keywords: Antipodal Vivaldi Antenna, High Gain, Parasitic Antenna, Ultra-Wideband Antenna.

Introduction
Over the past decades, the demand for phased array antennas (PAAs) has been growing rapidly with active research on them [1, 2]. The PAA is widely used for high gain beam-forming and scanning in telecommunication [3], microwave imaging [4, 5], and radar applications [6]. Typical radiating elements of the PAA are the dipole, microstrip patch, and Vivaldi antenna.

Typical radiating elements of the PAA are the dipole, microstrip patch, and Vivaldi antenna. Among these, the Vivaldi antenna, also known as the flared notch or tapered slot antenna, is a traveling-wave type antenna of which the bandwidth is usually wider compared with the dipole and microstrip patch antennas, which are usually classified as resonant antennas supporting standing waves. There are three main types of Vivaldi antennas: the coplanar Vivaldi antenna (CVA), the antipodal Vivaldi antenna (AVA), and the balanced antipodal Vivaldi antenna (BAVA) [7]. When comparing these antennas’ characteristics, the CVA has a higher gain and directivity than the others. In addition, it offers the best side lobe level performance and relatively wide bandwidth [7]. When designing the PAA radiating elements, considerations should be given to issues such as the grating lobe, field of view (FOV), active S-parameters, and scan blindness [8].

The key factor involved in these issues is the mutual coupling among the radiating elements. This occurs dominantly between the adjacent radiating elements due to the surface wave flowing through the ground plane [9]. This not only degrades the isolation characteristics, but also causes deterioration of the various previously mentioned PAA characteristics.

The main part
Among these, the Vivaldi antenna, also known as the flared notch or tapered slot antenna, is a traveling-wave type antenna of which the bandwidth is usually wider compared with the dipole and microstrip patch antennas, which are usually classified as resonant antennas supporting standing waves [10].

Vivaldi’s antenna is designed for all conditions. It is performed on a thin flexible substrate, which makes it easy to fit on various surfaces. Thus, this antenna can be used in different conditions. There is a patent for a two-element receiving section of a Vivaldi antenna for use on aircraft. Such use is possible because the antenna easily takes a streamlined shape. Besides, the Vivaldi antenna is ideal for aircraft, since it operates at speeds with a Mach number of up to 2.

Using the Vivaldi antenna model, we can evaluate its far-field radiation pattern and impedance.

Our model imitates the real design of the Vivaldi antenna through the use of a thin dielectric substrate. A conical slit is applied over this substrate, and the base plane is formed by an ideal electrical conductor. We construct the conical gap...
curves using the exponential function $e^{0.044x}$. The slit itself resembles a pipe with a wide end, the edges of which, curving, converge into a narrow line. However, unlike the pipe, the narrow end connects to the annular hole, and the wide end extends outward, as shown below.[11]

The reverse side of the substrate is a shorted 50-Ohm microstrip supply line, which, when modelling, was taken as an ideal electrical conductor. To excite the antenna, a port located on the line was used. The opening aerial geometry is defined as

$$W_{\text{max}} = \frac{c}{2f_{\text{min}}\sqrt{\varepsilon_r}}$$

$$W_{\text{min}} = \frac{c}{2f_{\text{max}}\sqrt{\varepsilon_r}}$$

Where c is the propagation velocity of an electromagnetic wave in a vacuum; f_{min} and f_{max} - minimum and maximum operating frequencies of the antenna; ε_r is the electrical permeability of the substrate material.[12]

The equation of the exponential form of the aperture was given by the formula

$$y = C_1e^{Rx} + C_2$$

Where C_1 and C_2 - const, are chosen so that the opening passes through the points with coordinates (x_1, y_1) and (x_2, y_2), indicated in Fig. 2 and defined as

$$C_1 = \frac{y_2 - y_1}{e^{Rx_2} - e^{Rx_1}}$$

$$C_2 = \frac{y_1e^{Rx_2} - y_2e^{Rx_1}}{e^{Rx_2} - e^{Rx_1}}$$

The resulting electric field of the antenna in the far zone is defined as the sum of the contribution to the electric field of each approximated area:

$$E(\theta, \varphi) = \sum_{n=1}^{N} E_n(\theta, \varphi)$$

where $E(0, \varphi)$ is the contribution of the nth approximated portion of the guide structure of the antenna in the electric field of the far zone.[13]

First, we design a two-layer Vivaldi antenna at S-band (6–90 GHz) as a basic radiating element of a 1×1 PAA.

The design of the AP element was performed using computer simulation in the CST Studio Suite. As the dielectric substrate, “Rogers 4003C” material was chosen with a substrate thickness of 1.524 mm, a copper layer thickness of 0.035 mm and a dielectric constant of $\varepsilon = 2.3$. The Vivaldi antenna model made in the CST Studio suite program is presented in Figure 2.

Design parameters of Vivaldi antenna elements

![Figure 2. The physical model of the antenna made in CST.](image)

Figure 3 shows the 3D pattern of the antenna at 70 GHz. Also, thanks to the model, we can see the return loss of a 5G Vivaldi antenna (Figure 4). We know that the Vivaldi antenna pattern faces the wide end of its conical slit. Our model confirms that the radiation pattern in the far zone has exactly this shape.
Conclusion

In this paper, the designs of a Vivaldi antenna with various sizes were presented. The simulation and fabrication result of 6 different sizes have been shown. Vivaldi antenna is a wideband antenna.

Thus a compact tri-band Vivaldi antenna for the use in high-frequency Wi-Fi applications, radar, geostationary satellite applications with a gain of about 2-7dBi has been designed. These advantages make the improved Vivaldi antenna valuable in many future wireless communication applications.

References

