Algorithms For Regular Synthesis Of Adaptive Systems Management Of Technological Objects Based On The Concepts Of Identification Approach

Husan Zakirovich Igamberdiev
*Tashkent State Technical University, Address: 2 Universitetskaya st., 100095, Tashkent city, Republic of Uzbekistan*

Jasur Usmonovich Sevinov
*Tashkent State Technical University, Address: 2 Universitetskaya st., 100095, Tashkent city, Republic of Uzbekistan, Phone:+998-97-762-82-40., sevinovjasur@gmail.com*

Follow this and additional works at: https://uzjournals.edu.uz/ijctcm

Part of the Engineering Commons

Recommended Citation

This Article is brought to you for free and open access by 2030 Uzbekistan Research Online. It has been accepted for inclusion in Chemical Technology, Control and Management by an authorized editor of 2030 Uzbekistan Research Online. For more information, please contact sh.arkinov@edu.uz.
Algorithms For Regular Synthesis Of Adaptive Systems Management Of Technological Objects Based On The Concepts Of Identification Approach

Cover Page Footnote

Erratum
???????
ALGORITHMS FOR REGULAR SYNTHESIS OF ADAPTIVE SYSTEMS MANAGEMENT OF TECHNOLOGICAL OBJECTS BASED ON THE CONCEPTS OF IDENTIFICATION APPROACH

Igamberdiev Husan Zakirovich¹, Sevinov Jasur Usmonovich²,
¹²Tashkent State Technical University
Address: 2 Universitetskaya st., 100095, Tashkent city, Republic of Uzbekistan
E-mail: sevinovjasur@gmail.com, Phone:+998-97-762-82-40

Abstract: Stable algorithms of adaptive control, estimation of controller parameters, synthesis of adaptive control of dynamic objects by the criterion of minimum dispersion, and synthesis of suboptimal adaptive-local control of dynamic objects based on predictive models are presented. Algorithms for the stable identification of dynamic control objects based on regularization and pseudoinversion methods based on a singular decomposition are presented. Based on the use of approximations in the form of a finite sum of Gaussian distributions, recurrent identification algorithms have been developed using multiple models and adapting their parameters. Stable algorithms are proposed for identifying the parameters of an object and a controller in a closed-loop control system based on the principle of iterative regularization using the method of variational inequalities, ensuring the convergence of the desired estimates of the parameters of the object and the controller almost certainly to true values. Stable algorithms for generating control actions in locally optimal adaptive control systems for dynamic objects based on non-orthogonal factorizations and pseudoinversions of ill-conditioned or degenerate square matrices are proposed that enhance the accuracy of forming control actions in a closed control loop.

Key words: closed-loop control system, identification, iterative regularization principle, variational inequality method, incorrectly posed problem, locally optimal adaptive control system, control action, regularized algorithms.


Такиё сўзлар: берк бошқариш система, идентификация, адаптив ростлагич, итератив мунтазамлаштириш, вариацион тенгсизлик, икки навбатли регулятор, конвейер, адаптив бошқариш системаси, мунтазамлаштириш, мунтазамлаштириш асаси, бошқариш таъсири, маъмъум тескарар тартиби
Currently, there is no universal approach to the identification of closed systems. In each case, different models, methods, techniques and algorithms are used. Techniques for ensuring identifiability by changing the algorithm of the functioning of the control system include: full or partial opening of feedback loops; alternate inclusion of several regulators with various settings; the introduction of delay in the feedback loop; use of non-linear or non-stationary regulators. Depending on the purposes of identification, the mode of operation of the system, the availability of a priori information, the methods and techniques used, there are several definitions of the concept of identifiability of closed systems: deterministic, stochastic, systemic, structural, parametric, in probability, by distribution, active, passive, for analysis, for management etc. It is known that the existence of feedback leads to the appearance of significant features of solving identification problems. This is due to problems of non-identifiability of closed systems and problems of convergence of identification methods developed for open systems. The problem of convergence of estimates in a closed loop arises due to correlations of perturbations at the output of the object and in the control signal. The convergence problem is solved by modifying identification methods to account for this correlation. However, there are such control systems in which certain structural restrictions are imposed on the driving influences, which lead to the fundamental impossibility of obtaining a unique solution to the identification problem [1-6].

Consider a linear system described by the following model:

\[
A(q^{-1})y(t) = B(q^{-1})u(t) + \xi(t),
\]

where \( A(q^{-1}) = I - \sum_{j=1}^{q} A_j(q^{-1})^j \), \( B(q^{-1}) = \sum_{j=1}^{q} B_j(q^{-1})^j \), \( u(t) - (m \times 1) \) - dimensional input, \( y(t) \) represents \((l \times 1)\)-dimensional output, \( \xi(t) - (l \times 1) \)-dimensional random sequence, \( I \) - identity matrix [6,7].

Following [1,8], it can be shown that the optimal steady-state predictor \( \hat{z}(t) \) for \( z(t) = \zeta(q)y(t) \) satisfies an equation of the form:

\[
\hat{C}(q^{-1})\hat{z}(t) = \hat{\beta}(q^{-1})u(t) + \hat{\alpha}(q^{-1})y(t),
\]

where \( \hat{C}(q^{-1}) = I + \hat{C}_1q^{-1} + \ldots + \hat{C}_nq^{-n} \), \( \hat{\beta}(q^{-1}) = \hat{\beta}_0 + \hat{\beta}_1q^{-1} + \ldots + \hat{\beta}_lq^{-l}, \hat{\beta}_0 = V \), \( \hat{\alpha}(q^{-1}) = \alpha_0 + \ldots + \alpha_rq^{-r} \).

The controller that provides the minimum covariance of regulation \( \zeta(q)y(t) \) relative to \( z(t) = \zeta(q)y^*(t) \) is determined by the equation:

\[
\hat{\beta}(q^{-1})u(t) + \hat{\alpha}(q^{-1})y(t) = \hat{C}(q^{-1})\zeta(q)y^*(t),
\]

where \( y^*(t) \) represents the preassigned desired path, while the tracking error at the output \( y(t) - y^*(t) \) satisfies the equation:

\[
\hat{C}(q^{-1})\zeta(q)[y(t) - y^*(t)] = \hat{C}(q^{-1})F(q)\hat{\xi}(t).
\]

Model (1) can be considered as a one-step predictor with a lead error of
\begin{align*}
\xi(t) &= y(t) - \hat{y}(t), \\
\hat{y}(t) &= E\{y(t) \mid F_{t-1}\},
\end{align*}

where

\begin{align*}
\hat{y}(t) &= E\{y(t) \mid F_{t-1}\},
I &= \tilde{F}(q^{-1})A(q^{-1}) + q^{-d}\tilde{G}(q^{-1}).
\end{align*}

Multiplying (1) by \( \tilde{F}(q^{-1}) \) and using identity (2), we obtain the equation:

\begin{align*}
E\{y(t + d) \mid F_t\} &= \tilde{G}(q^{-1})y(t) + \Gamma_2(q^{-1})\xi(t) + \bar{\beta}(q)u(t),
\end{align*}

where

\begin{align*}
\bar{\beta}(q) &= q^d\tilde{F}(q^{-1})B(q^{-1}) = \tilde{\beta}_0 + \tilde{\beta}_1q^1 + \ldots + \tilde{\beta}_{d-1}q^{d-1} + \beta'(q^{-1}), \\
\beta'(q^{-1}) &= \beta_0q^{-1} + \beta_1q^{-2} + \ldots, \quad \Gamma_2(q^{-1}) = \Gamma_{20} + \Gamma_{21}q^{-1} + \ldots.
\end{align*}

The control law, leading \( E\{y(t + d) \mid F_t\} \) to zero and having the lowest energy, it is advisable to determine the expression

\begin{align*}
u(t + j) &= -\bar{L}_j\tilde{G}(q^{-1})y(t) + \Gamma_2(q^{-1})\xi(t); \quad j = 0, \ldots, d - 1,
\end{align*}

where

\begin{align*}
\bar{L}_j &= \left[\tilde{\beta}_j\right]^\top \left[\sum_{k=0}^{d-1} \tilde{\beta}_k\tilde{\beta}_k^\top + \alpha I\right]^{-1},
\end{align*}

\( \alpha > 0 \) - regularization parameter.

The suboptimal control law (3) can be turned into adaptive if one uses an algorithm for estimating the matrices \( A(q^{-1}) \) and \( B(q^{-1}) \) included in model (1).

In the theory of optimal adaptive systems, methods are developed for controlling dynamic objects under conditions when a number of essential parameters and factors determining their behavior are unknown. In such cases, it is advisable to use locally optimal control algorithms [9-11]. Local-optimal control of a dynamic object described by equations of the form

\begin{equation}
\begin{aligned}
x_{t+1} &= Ax_t + Bu_t + \xi_{t+1}, \\
y_t &= H^Tx_t, \quad t = 0, 1, \ldots,
\end{aligned}
\end{equation}

where \( x_t \in \mathbb{R}^n \) is a state vector; \( u_t \in \mathbb{R}^m \) - management; \( y_t \in \mathbb{R}^l \) - observed yield; \( A, B, H \) - matrices of the corresponding dimensions; \( \xi_1, \xi_2, \ldots \) - a sequence of random vectors, in the sense of criterion \( V(x) = x^\top Cx, \quad C^\top = C \geq 0 \), is determined by the expression [11]:

\begin{align*}
u_t^* &= \arg\min_u E[\Delta V(x_t, u_t)/x_t, u_t],
\end{align*}

where \( \Delta V(x_t, u_t) = V(Ax_t, Bu_t) - V(x_t) \).

Management \( u_t^* \) under conditions \( E(\xi_{t+1}/x_0, u_0^* = 0, E(\xi_{t+1}/x_0, u_0^*) = \text{const} \), is determined from the equation:

\begin{equation}
B^\top CBu_t^* = -B^\top CAx_t,
\end{equation}

with \( \Delta V(x_t, u_t^*) = -x_t^\top Qx_t, \quad Q = C - A^\top CA + A^\top CB(B^\top CB)^+B^\top CA \).

Thus, the control \( u_t^* \) based on (4) has the form:

\begin{align*}
u_t^* &= \theta^\top x_t,
\end{align*}

where \( \theta^\top \) is determined from the expression
\[ B^T C B \theta^T = -B^T C A. \]  \hfill (5)

The systems of equations (4) or (5) can be poorly conditioned. Poorly conditioned and degenerate systems can be indistinguishable within a given accuracy. We present a regular algorithm for estimating the control law based on equation (5) [12-14]. Take \[ B^T C B = D, \quad -B^T C A = S. \]

Then
\[ D \theta^T = S. \]  \hfill (6)

We introduce the following approximation conditions:
\[ \| D - \overline{D} \| \leq \delta, \quad \| s_j - \overline{s}_j \| \leq \delta, \]
where \( D, \overline{s}_j \) are the exact values of the matrix \( D \) and the \( j \)-th column of the matrix \( S, j = 1, 2, ..., n \).

We will construct approximations to the pseudo-solution \( \theta_j = D^+ s_j \) of equation (6) in the form
\[ \theta_{j,r} = g_r(D)s_j, \quad (7) \]
\[ \overline{\theta}_{j,r} = g_r(D)D\theta_{j,r}, \quad (8) \]
where \( \theta_j \) - is the \( j \)-th column of the matrix \( \theta^T, \quad j = 1, 2, ..., n \); \( s_j \) - is the \( j \)-th column of the matrix \( S \).

Taking into account that the matrix operator is self-adjoint, we will use the method of M.M. Lavrentiev [13, 14] to regularize the solution of equation (7). The method of M.M. Lavrentiev corresponds to functions
\[ \alpha^r(\lambda) = (\alpha + \lambda)^{-1}, \quad \alpha = r^{-1}, \quad 0 \leq \lambda < \infty. \]

Then approximations (7), (8) take the form
\[ \theta_{j,a} = (D + \alpha I)^{-1} s_j, \quad \overline{\theta}_{j,a} = (D + \alpha I)^{-1} D\theta_{j,a}. \]

Passing to an iterated version of the method under consideration, we can write [14]
\[ \theta_0 = 0, \quad \theta^{(l)}_j = \theta^{(l-1)}_j - B_a(D\theta^{(l-1)}_j - s_j) \quad l = 1, ..., r, \]
\[ \overline{\theta}_0 = 0, \quad \overline{\theta}^{(l)}_j = \overline{\theta}^{(l-1)}_j - \overline{B}_a(D\overline{\theta}^{(l-1)}_j - D\theta^{(l-1)}_{j,r}) \quad l = 1, ..., r. \]
\[ B_a = g(D), \quad \overline{B}_a = B_aDB_a. \]

The choice of parameter \( r \) is advisable to carry out on the basis of a relationship of the form
\[ \| D \theta_{j,r} - s_j \| = b(\delta + \| \theta_{j,r} \| \| h \|), \quad b > 1. \]

Let the control object in a closed system be described by an \( n \)-th order difference equation [15,16]:
\[ x[k] = \sum_{i=1}^n a_i x[k-i] + \sum_{j=1}^a b_j \eta[k-j], \]
\[ y[k] = x[k] + v[k]; \quad \eta[k] = u[k] + w[k], \]
where \( \eta[k] \) and \( x[k] \) are the input and output of the object; \( w[k] \) and \( v[k] \) are the perturbing effect and the error in measuring the output, respectively; \( u[k] \) and \( y[k] \) - the control action and the result of measuring the output, used as input and output data in the identification procedure; \( a_i, b_j \) - unknown parameters of the object. The sequence \( v[k] \) is not correlated with the disturbance \( w[k] \), the background of signals \( u[k] \) and \( y[k] \).

The difference equation of the controller has the form:
\[ u[k] = \sum_{i=1}^{11} c_i u[k-i] + \sum_{j=0}^{12} d_j \varepsilon[k-j], \]
\[ \varepsilon[k] = y^*[k] - y[k], \]
where $y'[k]$ is the current value of the task; $e[k]$ - mismatch signal; $c_i, d_j$ – known parameters of the controller.

When solving the identification problem under consideration, it becomes necessary to determine the parameter vector of the object $\theta$ based on equation

$$H \cdot \theta = Y,$$

where the matrix $H$ and vector $Y$ are formed on the basis of realizations of the control action $u[k]$ and output $y[k]$, $\theta = [a_1 \cdots a_p | b_1 \cdots b_p]^\top$.

The solution to this problem is based on the regularization method of A.N.Tikhonov [12] and effective pseudoinversion based on the singular decomposition of matrices [17]. The regularization principle leads to an estimate of the desired solution $\hat{\theta}$ based on equation

$$\hat{\theta}_\alpha = (H^\top H + \alpha I)^{-1} H^\top Y,$$

where $\alpha > 0$ is the regularization parameter, $I$ – is the identity matrix.

If the error levels of the initial data

$$h = \|H - \bar{H}\|, \quad \delta = \|Y - \bar{Y}\|,$$

are known, then the regularization parameter $\alpha$ can be determined on the basis of the principle of generalized residual [18,19], where $\bar{H}$ and $\bar{Y}$ are the exact values of the matrix operator $H$ and the vector of the right-hand side $Y$. If the numbers $h$ and $\delta$ are unknown, then it is advisable to determine the regularization parameter $\alpha$ based on the quasi-optimal method:

$$\|\hat{\theta}_{\alpha i} - \hat{\theta}_\alpha\| = \min, \quad \alpha_{i+} = \kappa \alpha_i, \quad i = 0,1,2,..., \quad 0 < \kappa < 1.$$

It is shown that if the rank of the matrix is $H \quad r = p$, then the estimation of the parameter vector $\hat{\theta}$ should be determined on the basis of effective pseudoinverse matrices [20]:

$$\hat{\theta}_\tau = VS_iU^\top Y = \sum_{i=1}^r \frac{1}{\mu_i} v_i \cdot u_i^\top,$$

where $S^+_i$ is the effective pseudo-matrix $S = \text{diag}(s_{i1}^+, \ldots, s_{ir}^+); \quad r' < r, \quad s_{ir}^+ = 1/\mu_i$ if $\mu_i > \tau$, and $s_{ir}^+ = 0$ if $\mu_i = 0$.

To analyze the quality of management processes, it is necessary to analyze the conditions of convergence. Consider a control object with input $u(t)$ and output $y(t)$, described by the equation [6,7]:

$$A(d)y(t) = B(d)u(t) + \xi(t),$$

where $A$ and $B$ are polynomials with the backward shift operator $d$:

$$(1 + a_1 d + \ldots + a_r d^r) y(t) = (b_1 d + \ldots + b_m d^m) u(t) + \xi(t),$$

$$y(t) = -a_1 y(t - 1) - \ldots - a_n y(t - n) + b_1 u(t - 1) + \ldots + b_m u(t - m) + \xi(t),$$

or

$$y(t) = \theta^\top \varphi(t) + \xi(t),$$

where

$$\theta = [a_1 \ldots a_n; b_1 \ldots b_m]^\top, \quad \varphi(t) = [-y(t - 1) \ldots - y(t - n); u(t - 1) \ldots u(t - m)]^\top.$$

It is assumed that stationary white noise $\xi(t)$ has zero mathematical expectation and dispersion $\sigma^2_\xi$. An identifiable system with changing parameters can be represented as the following dynamic model in the state space:

$$\begin{cases}
\theta(t - 1) = \theta(t) + w(t), \\
y(t) = \varphi^\top \hat{\theta}(t) + \xi(t),
\end{cases}$$

where $\xi(t)$ and $w(t)$ are perturbations, and $w(t)$ models the process of changing system parameters.
If the process of changing the parameters is associated with the use of a Gaussian distribution with a changing covariance matrix, then the classical Kalman filter can be used [1,21]. It can be shown that in the case when \( w(t) \) is not Gaussian, then the Kalman filter does not provide an optimal estimate. In this case, it is advisable to use an algorithm of the form [5,21]:

\[
P_i(t) = P_i(t-1) - \frac{P_i(t-1)\Phi(t)\Phi^T(t)P_i(t-1)}{R_2 + \Phi^T(t)P_i(t-1)\Phi(t)} - \epsilon_i(t),
\]

where \( R_2 \) is the noise variance.

An estimate \( \hat{\theta}(t) \) of the parameter vector \( \hat{\theta}(t) \) is determined by the relation

\[
\hat{\theta}(t) = \sum_{i=1}^{M} \beta_i(t) \tilde{y}_i(t).
\]

Consider the class of models with noise in the object and control device, which is widely used in practical problems. This class of control systems with noise in the object and the control device can be described by equations of the form [22,23]:

\[
y_n = \sum_{i=1}^{p} a_i y_{n-i} + \sum_{i=1}^{q} b_i u_{n-i} + \sigma_y v_{1n},
\]

\[
u_n = \sum_{i=1}^{\mu} c_i y_{n-i} + \sum_{i=1}^{\nu} d_i u_{n-i} + \sigma_z v_{2n},
\]

where \( \{u_n\} \) and \( \{y_n\} \) – the observed sequences at the input and output of the object, respectively; \( \{v_{1n}\} \) and \( \{v_{2n}\} \) – Gaussian sequences with zero expectation and unit variance, the joint distribution is Gaussian. At the same time,

\[
M[v_{1k} v_{1j}] = M[v_{2k} v_{2j}] = \delta_{kj}, \quad M[v_{1n} y_{n-j}] = M[v_{2n} y_{n-j}] = 0, \quad M[v_{1n} u_{n-j}] = M[v_{2n} u_{n-j}] = 0,
\]

\[
M[v_{1n} v_{2m}] = \rho \delta_{nm} (j \geq 1), \quad 1 > \rho > -1, \quad \delta_{nn} \quad \text{is the symbol of Kronecker.}
\]

To determine the desired parameters of the object and the control device, it is necessary to solve the following system of equations:

\[
S \cdot \theta = y,
\]

(9)

or in expanded form:

\[
S = \begin{bmatrix}
\alpha_{11} S_1^T S_1 & \alpha_{12} S_1^T S_2 & \alpha_{13} S_1^T S_3 \\
\alpha_{21} S_2^T S_1 & \alpha_{22} S_2^T S_2 & \alpha_{23} S_2^T S_3 \\
\alpha_{31} S_3^T S_1 & \alpha_{32} S_3^T S_2 & \alpha_{33} S_3^T S_3
\end{bmatrix}, \quad \theta = \begin{bmatrix}
\hat{\theta}_1 \\
\hat{\theta}_2 \\
\hat{\theta}_3 \\
\hat{\theta}_4
\end{bmatrix}, \quad y = \begin{bmatrix}
\alpha_{11} Y_1 + \alpha_{12} Y_2 + \alpha_{13} Y_3 \\
\alpha_{21} Y_1 + \alpha_{22} Y_2 + \alpha_{23} Y_3 \\
\alpha_{31} Y_1 + \alpha_{32} Y_2 + \alpha_{33} Y_3
\end{bmatrix}
\]

where vectors \( Y_N, S_N \) and matrices \( S_1, S_2 \) are formed based on implementations of input and output signals \( \{u_n\}, \{y_n\}, n = 0, 1, \ldots, N; \alpha_{11} = \sigma_2^2, \alpha_{12} = -\rho \sigma_1 \sigma_2, \alpha_{22} = \sigma_2^2; \) parameters \( \theta_1, \theta_2, \theta_3, \theta_4 \) are defined by the following expressions:

\[
\theta_1^T = (a_1, \ldots, a_k, b_1, \ldots, b_l), \quad \theta_2^T = (a_{k+1}, \ldots, a_{\mu}, b_{i+1}, \ldots, b_q),
\]

\[
\theta_3^T = (c_1, \ldots, c_k, d_1, \ldots, d_l), \quad \theta_4^T = (c_{k+1}, \ldots, c_{\mu}, d_{i+1}, \ldots, d_q).
\]

It is known that the solution of an operator matrix equation of type (9) can be reduced to the problem of minimizing the residual functional, that is, finding a quasisolution of the equation on a closed convex set \( Q \) in the sense of V.K. Ivanov [13,14]. As a residual, we can take a quadratic functional of the form:
\[ \Phi(\theta) = \|S\theta - y\|^2_H. \]

Then the iterative sequence for \( \hat{\theta}_r \) can be written in the following form [24]:
\[
\hat{\theta}_{r+1} = P_\Phi(\hat{\theta}_r - \alpha_r (F_\delta(\hat{\theta}_r) + \varepsilon_r \hat{\varepsilon}_r)), \quad r = 0,1,...,
\]
where \( P_\Phi \) is a metric projector; \( \delta \Phi = F \), \( \varepsilon_r \) - iteration number; the regularization parameters \( \alpha_r > 0, \varepsilon_r > 0 \) are determined by the expressions:
\[
\alpha_r = (1 + r)^{-1/2}, \quad \varepsilon_r = (1 + r)^{-p}, \quad 0 < p < 1/2.
\]

The iterative process under consideration can be stopped based on relations of the form [14]:
\[
\lim_{\delta \to 0} \delta / \varepsilon_r(\delta) = 0, \quad \lim_{\delta \to 0} \delta^{1/2} / \varepsilon_r^2(\delta) = 0,
\]
\[
\rho(F_\delta - F) \leq \delta, \quad \delta \geq 0, \quad F_\delta \in \mathcal{S}.
\]

Moreover,
\[
\lim_{\varepsilon \to 0} \left\| \hat{\theta}_r - \theta^* \right\| = 0,
\]
where \( \theta^* \in \Xi \) is the only solution to the variational inequality \( (\theta, \theta - d) \leq 0, \forall d \in \Xi, \Xi \) - is the set of solutions (9).

Quite often, in the synthesis of a controller in closed systems, the methods of locally optimal adaptive control are used [25-28]. Consider the control object defined in the form
\[
A(z^{-1})y_{r+1} = B(z^{-1})u_r + w_{r+1},
\]
where \( y_r \in R^l \) - the measured outputs, \( u_r \in R^m \) - is the control.

Then, taking into account that
\[
u_r = \theta^T(\Omega_r) \eta_t, \quad \eta^T_t = (y^T_{t-n+1}, \ldots, y^T_{t}, u^T_{t-n+1}, \ldots, u^T_{t}),
\]
\[
\Omega^T = (-A^{(n)}, \ldots, -A^{(1)}, B^{(n)}, \ldots, B^{(0)}), \quad \Phi^T = (y^T_{t-n+1}, \ldots, y^T_{t}, u^T_{t-n+1}, \ldots, u^T_{t}),
\]
the locally optimal control law will take the form [5,27]:
\[
u_r = (H^TB^{(0)})^{-1}(A^{(1)} + S^{(1)})y_t + \ldots + (A^{(n)} + S^{(n)})y_{t-n+1} + \ldots + (-B^{(1)} + D^{(1)})u_{t-1} + \ldots + (-B^{(n-1)} + D^{(n-1)})u_{t-n+1},
\]

where \( S^{(i)}, i = 1, n \) and \( D^{(j)}, j = 1, n-1 \) - arbitrary matrices of dimension \( l \times l \) and \( l \times m \), respectively, \( H \) is a matrix of \( m \times l \) such that \( \det H^TB^{(0)} \neq 0 \).

In expression (10), a square matrix of the form \( G_0^T = H^TB^{(0)} \) is inverted. This matrix may be poorly conditioned. Below is an algorithm for stable estimation of the inverse matrix \( G_0^{-1} \) in (10).

The approximation for a pseudo-inverse matrix can be determined using the relation [29,30]:
\[
G_0^+ = R_k^T U_k^T G_k^+,
\]

where \( R_k, U_k \) - are determined using the expressions:
\[
G_k = U_k^T R_k, \quad U_k^T = \left[ U_1^T : U_2^T \right], \quad R_k = \left[ R_1 : R_2 \right], \quad U_2 = G_{21}^T,
\]
\[
R_2 = G_{12}^T, \quad U_1 = \begin{bmatrix} 1 & 0 & \ldots & 0 \\ \vdots & 1 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ s_{k_1} & s_{k_2} & \ldots & 1 \end{bmatrix}, \quad R_1 = \begin{bmatrix} g_{11} & g_{12} & \ldots & g_{1k} \\ g_{21} & g_{22} & \ldots & g_{2k} \\ \vdots & \vdots & \ldots & \vdots \\ g_{k_1} & g_{k_2} & \ldots & g_{kk} \end{bmatrix}.
\]

The calculation of \( R^+ \) and \( U^+ \) in (11), when \( R \) and \( U^T \), respectively, are upper trapezoidal matrices, is effectively carried out by orthogonal factorization \( R = SP \) using the Givens or
Householder transformations [17,29], where $S$ – is the lower triangular square, $P$ – is the orthogonal matrix. Then $R^2 = P^2S^{-1}$.

The given regularized algorithms make it possible to stabilize the procedure for the formation and development of control actions in locally optimal adaptive control systems for dynamic objects under conditions of poor conditioning of matrices $G$ and $G^{(0)}$.

References: