THE PROBLEM OF RAMCHUNDRA FOR A PROBLEM OF -CAPTURE

Bahrom Samatov
NamSU professor and masters at the Department of differential equation and mathematics physic

Saboxat Urailova
NamSU professor and masters at the Department of differential equation and mathematics-physic

Umidjon Mirzamahmudov
NamSU professor and masters at the Department of differential equation and mathematics-physic

Follow this and additional works at: https://uzjournals.edu.uz/namdu

Part of the Physical Sciences and Mathematics Commons

Recommended Citation
Available at: https://uzjournals.edu.uz/namdu/vol1/iss2/2

This Article is brought to you for free and open access by 2030 Uzbekistan Research Online. It has been accepted for inclusion in Scientific Bulletin of Namangan State University by an authorized editor of 2030 Uzbekistan Research Online. For more information, please contact brownman91@mail.ru.
THE PROBLEM OF RAMCHUNDRA FOR A PROBLEM OF CAPTURE

Cover Page Footnote

Erratum

This article is available in Scientific Bulletin of Namangan State University: https://uzjournals.edu.uz/namdu/vol1/iss2/2
THE PROBLEM OF RAMCHUNDRA FOR A PROBLEM OF l-CAPTURE
Samatov Bahrom Tajiahmedovich, Uralova Saboxat Ismoiljon qizi, Mirzamaxmudov Umidjon Alijon o‘g’li,
NamSU professor and masters at the Department of differential equation and mathematics-physics

Abstract. We study the problem for a differential game of l-capture. We study the problem of Ramchundra with geometric constraint. A strategy of the boat is constructed depending only with geometric constraint. In this article, we constructed a strategy for approaching the ship to the boat.

Key words: Ramchundra, l-capture, geometric constraint, differential equations, differential game

One of the problems [2] discussed by Ramchundra (Indian mathematician Nesudas Ramchundra (1821-1880)) is the intercept problem for a slow pursuer versus a fast target. He wrote: Supposing a ship to sail from given place A, in a given place, at the same time that a boat from another place B sets out in order (if possible) to come up with her and supposing the rate at which each vessel progresses to be given it is
required to find in what direction the letter must proceed, so that if a cannot up with the former, it may however approach it as near as possible.

We learn the problem of Ramchundra in the case l–interception. Let in the space \mathbb{R}^n the controlled object B (the boat), intercepts another object A (the ship). Suppose X and Y are the locations of the boat and the ship respectively, and x_0, y_0 ($x_0 \neq y_0$) are their initial locations. The motions of the objects are described by the equations

$$B: \dot{y}(t) = v_b, \quad y(0) = y_0; \quad A: \dot{x}(t) = v_a, \quad x(0) = x_0.$$ \hfill (1)

where $x, y, v_b, v_a \in \mathbb{R}^n, n \geq 1$, $|v_a| \leq \beta$ is the control functions of the object A (the ship) and $|v_b| \leq \alpha$ is that of the object B (the boat), α and β are given positive numbers.

If we say $z(t) = x(t) - y(t)$, then from (1) we will get the equation:

$$\dot{z} = v_a - v_b, \quad z(0) = z_0 = x_0 - y_0.$$ \hfill (2)

where $z_0 = x_0 - y_0$.

The goal of the boat B is achievement of the inequalities $|x(t) - y(t)| \leq l$ if at some moment $t > 0$. And according to the equation (2) we have $|z(t)| < l$. We know constructing strategy for boat (see [1], [3-4]). According to the figure we have

$$Tv_b + w = Tv_a - z_0.$$ \hfill (3)

Squaring both sides (2) of these equalities and we obtain a quadratic equation with respect to T.

![picture1](image-url)
Lemma. If \(\xi \geq -mk + \sqrt{(1-k^2)(1-m^2)} \) the function is \(T(\xi) > 0 \).

It is not difficult to show that this function is positive.

We now substituting \(T(\xi) \) into relation (3) find the strategy for boat in form

\[
v_b = v_a - F(\xi)(mv_a + \alpha z_0)
\] (4)

where

\[
F(\xi) = \frac{mk + \xi + \sqrt{(mk + \xi)^2 - (1-k^2)(1-m^2)}}{\xi m + k + m\sqrt{(mk + \xi)^2 - (1-k^2)(1-m^2)}}
\]

Theorem. If \(-mk + \sqrt{(1-k^2)(1-m^2)} \leq \xi \leq 1 \) then the boat using of the strategy (3) realizes \(l \) interception with the ship.

Proof:

Obviously

\[
z(t) = z_0 + \int_0^t (v_a - v_b) d\tau
\]

Squaring both sides of this equality and we find
\[|z(t)|^2 = |z_0|^2 - 2 \left(z_0 \int_0^t F(\xi(\tau))(mv_0(\tau) + \alpha \dot{z}_0) d\tau \right) + \left(\int_0^t F(\xi(\tau))(mv_0(\tau) + \alpha \dot{z}_0) d\tau \right)^2 \leq \]
\[\leq |z_0|^2 - 2 \int_0^t F(\xi(\tau))(z_0, mv_0(\tau) + \alpha \dot{z}_0) d\tau + \left(\int_0^t F(\xi(\tau))(mv_0(\tau) + \alpha \dot{z}_0) d\tau \right)^2 = \]
\[= |z_0|^2 - 2\beta |z_0| \int_0^t N(\xi(\tau)) d\tau + \beta^2 \left(\int_0^t M(\xi(\tau)) d\tau \right)^2, \]

where
\[N(\xi) = F(\xi)(m\xi + k), \quad M(\xi) = F(\xi)\sqrt{m^2 + 2km\xi + k^2} \]

And hence
\[N(p) \leq N(\xi) \leq N(1), \quad M(p) \leq M(\xi) \leq M(1) \text{, where } p = -mk + \sqrt{(1-k^2)(1-m^2)} \]

Thus
\[|z(t)|^2 - l^2 \leq |z_0|^2 - l^2 - 2\beta |z_0| \int_0^t N(\xi(\tau)) d\tau + \beta^2 \left(\int_0^t M(\xi(\tau)) d\tau \right)^2 \]
\[= |z_0|^2 \left(1 - m^2 \right) - 2\beta |z_0| \sqrt{1-m^2} \int_0^t \frac{N(\xi(\tau))}{\sqrt{1-m^2}} d\tau + \beta^2 \left(\frac{\int_0^t N(\xi(\tau)) d\tau}{\sqrt{1-m^2}} \right)^2 \]
\[+ \beta^2 \left(\int_0^t M(\xi(\tau)) d\tau \right)^2 = \]
\[= \left[|z_0| \sqrt{1-m^2} - \beta \left(\int_0^t N(\xi(\tau)) d\tau \right) \right]^2 - \beta^2 \left(\frac{\int_0^t N(\xi(\tau)) d\tau}{\sqrt{1-m^2}} \right)^2 - \left(\int_0^t M(\xi(\tau)) d\tau \right)^2 \]

We show that
\[N(\xi) \geq \sqrt{1-m^2} M(\xi) \]
\[F(\xi)(m\xi + k) \geq \sqrt{1-m^2} \cdot F(\xi) \sqrt{m^2 + 2km\xi + k^2} \]
\[m^2\xi^2 + 2km\xi + k^2 \geq (1-m^2)\left(m^2 + 2km\xi + k^2 \right) \]
\[\xi^2 \geq 1 - (m^2\xi^2 + 2km\xi + k^2) \]
\[\xi^2 + 2km\xi - 1 + k^2 + m^2 \geq 0, \]

From here we have
\[|z(t)|^2 - l^2 \leq \left(|z_0| \sqrt{1-m^2} - \beta \frac{\int_0^t N(\xi(\tau)) d\tau}{\sqrt{1-m^2}} \right)^2 \]

The last function \(N(\xi) \) is limited below with \(\sqrt{(1-k^2)(1-m^2)} \)

From here, we can say \(|z(T)| < l \) if at some time \(T < \infty \)

References