•  
  •  
 

Central Asian Problems of Modern Science and Education

Abstract

In this article, we have explored the Toda lattice hierarchy in the class of periodic functions with a free term. We have given an effective method of constructing of the periodic Toda lattice hierarchy with a free term. We have discussed the complete integrability of the constructed systems that is based on the inverse spectral problem of an associated discrete Hill`s equation with periodic coefficients. In particular, Dubrovin-type equations are derived for the time-evolution of the spectral data corresponding to the solutions of any system in the hierarchy.

First Page

100

Last Page

108

DOI

https://doi.org/10.51348/campse0024

References

[1]. Toda M. Waves in nonlinear lattice. - Suppl., Progress Theor. Physics, 1970, 45, p. 174-200.

[2]. Toda M. Theory of Nonlinear Lattices. Springer-Verlag Berlin Heidelberg New York, 1981.

[3]. Manakov S. V.: Complete integrability and stochastization of discrete dynamical systems, Zh. Eksper. Teoret. Fiz. 67 (1974), 543–555.

[4]. Flaschka H. On the Toda lattice. II.-Progress Theor. Physics, 1974, 51, No. 3, p. 703-716.

[5]. B. A. Dubrovin, V. B. Matveev, S. P. Novikov.: Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties, Uspekhi Mat. Nauk 31:1(187) (1976), 55–136.

[6]. Date E., Tanaka S. Analog of inverse scattering theory for discrete Hill`s equation and exact solutions for the periodic Toda lattice.-Progress Theor. Physics, 1976, 55, No. 2, p. 217-222.

[7]. Krichever, I. M.: Algebraic curves and non-linear difference equations, Uspekhi Mat. Nauk, 33:4(202) (1978), 215–216.

[8]. Samoilenko V. G, Prikarpatskii A. K.: Periodic problem for a Toda chain, Ukrainian Mathematical Journal 34 (1982), 380-385.

[9]. Babajanov B.A., Feckan M., Urazbaev G.U.: On the periodic Toda Lattice with self-consistent source, Commun. Sci. Numer. Simul. 22 (2015), 379-388.

[10]. Babajanov, B.A., Khasanov, A.B.: Periodic Toda chain an integral source, Theoret. and Math. Phys. 184 (2015), 1114-1128.

[11]. Babajanov B.A., Feckan M., Urazbaev G.U.: On the periodic Toda Lattice hierarchy with an integral source, Commun. Sci. Numer. Simul. 52 (2017), 110-123.

[12]. Yakhshimuratov A.B. Integration of the Korteweg-de Vries equation with a special free term in the class of periodic functions. Ufa Mathematical Journal. Volume 3. № 4 (2011). Pp. 141-147.

[13]. Khasanov A. B., Matyakubov M.M. Integration of the nonlinear Korteweg – de Vries equation with an additional term. TMF, 203 (2), 2020, pp. 192-204.

[14] Liu, X., Zeng, Y.: On the Toda lattice equation with self-consistent sources, J. Phys. A: Math. Gen. 38 (2005), 8951-65.

[15] Bulla, W., Gesztesy, F., Holden, H., Teschl, G.: Algebro-Geometric Quasi-Periodic Finite-Gap Solutions of the Toda and Kac-van Moerbeke Hierarchies, Memoirs of the Amer. Math. Soc. 135-641, 1998.

[16] Teschl, G.: On the Toda and Kac-van Moerbeke hierarchies, Math. Z. 231 (1999), 325-344.

[17]. Teschl G. Jacobi Operators and Completely Integrable Lattices, Mathematical Surveys and Monographs, vol.72, AMS, 2000.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.