•  
  •  
 

Scientific reports of Bukhara State University

Abstract

Introduction. In the information-search engine, semantic analysis and synthesis occupy a leading place. When we say automatic semantic analysis, using specially developed linguistic algorithms, we understand a set of methods and techniques that can be used with sufficient accuracy to express the meaning of random speech in a natural language with the help of a rigorous, accurate tool that is carried out on a computer. Highlighting the importance of the semantic analyzer in the information search engine, it is first of all associated with the study of the process of semantic analysis and synthesis in the automatic analysis of the text, the elimination of its problems. Research methods. The direct semantic analysis and synthesis method were used to cover the importance of semantic analysis and synthesis in the automatic analysis of text. Through this, their leading position in the automatic analysis of the text was manifested. Because initially the morphological and syntactic analysis of the text is carried out, and then the semantic analysis is performed. Semantic analysis works with meaning. Moreover, semantics is closely related to philosophy, psychology and other sciences, in addition to knowledge of the structure of the language. In semantic analysis, it is necessary to take into account both the social and cultural features of the native language. The process of human thinking, the means of expressing ideas, is a difficult process to formalize language. Results and discussions. Automatic semantic analysis is one of the urgent and complex tasks of computer linguistics. Semantic analysis and synthesis are of great importance in the automatic analysis of the text. In the information-search system, linguistic analysis of the text, semantic analysis and synthesis in automatic analysis will be based on the perfection of the process, semantic search in the ISS and the solution of its problems will be based on the clarification of the semantic analyzer function, the formation of the future SemA (semantic analyzer). In order for the SemA to work, the process of semantic analysis and synthesis should be systematically adjusted at the beginning of the ISS. The creation of linguistic supply of the Uzbek language SemA, the semantic analyzer and its position in the information search engine directly depend on the importance of semantic analysis and synthesis in the automatic analysis of the text. The creation of new methods of semantic analysis of texts is relevant in solving such problems as machine translation of computer linguistics, text classification. At the same time, it is also important to develop new tools for automating semantic analysis. Conclusion. In the information-search system, it is important to systematically establish the process of semantic analysis and synthesis. Automatic text analysis and synthesis plays an important role. Because both the theoretical and practical development of computer linguistics provides the basis for the creation of effective machine translation systems aimed at the realization of human needs. Semantic analysis is the most complex line of automatic text analysis.

First Page

112

Last Page

124

References

1. Abjalova M. Matnlarga avto-lingvistik ishlov berish tizimlari // Shestaya Mejdunarodnaya konferentsiya po kompyuternoy obrabotke tyurskix yazikov «TurkLang - 2018». - Toshkent: «NAVOIY UNIVERSITETI», 2018. - S. 314-316.

2. Apresyan Yu.D. Idei i metodi sovremennoy strukturnoy lingvistiki. -M.: Prosveshenie, 1966. - S. 254.

3. Batura T.V. Semanticheskiy analiz i sposobi predstavleniya smisla teksta v kompyuternoy lingvistike // Mejdunarodniy jurnal Programmnie produkti i sistemi. - December, 2016.

4. Bolshakova B.I. Kompyuternaya lingvistika: metodi, resursi, prilojeniya // Avtomaticheskaya obrabotka tekstov na yestestvennom yazike i kompyuternaya lingvistika: ucheb. posobie. –M.: MIEM, 2011. S. 93-94.

5. Bolshakova Ye.I., Vorontsov K.V., Yefremova N.E., Klishinskiy E.S., Lukashevich N.V., Sapin A.S. Avtomaticheskaya obrabotka tekstov na yestestvennom yazike i analiz dannix. - NIU VShE, 2017. - 269 s.

6. Vdovin S.M. Poluchenie, xranenie i rasprostranenie geodannix kak yediniy informatsionniy protsess / S.M. Vdovin, S.A. Fedosin, A.A. Yamashkin, S.A. Yamashkin // Prirodnie opasnosti: svyaz nauki i praktiki: materiali II Mejdunarodnoy nauch.-prakt. konf. / otv. red. S.M. Vdovin. - Saransk, 2015. - S. 82-90.

7. Vdovin S.M. Universitetskie geoportali kak instrument resheniya ekologicheskix problem / S.M. Vdovin, A.A. Yamashkin, S.A. Yamashkin // Ekologicheskie problemi. Yevraziyskoe prostranstvo. - M., 2014. - S. 552-567.

8. Garshina V.V., Bogoyavlenskaya Yu.A. Razrabotka lingvisticheskogo parsera russkogo yazika // http://www.vestnik.vsu.ru/pdf/analiz/2012/02/2012-02-29.pd.

9. De Smet W., Moens M.F. Cross-language linking of news stories on the web using interlingual topic modelling // Proceedings of the 2Nd ACM Workshop on Social Web Search and Mining. - SWSM ’09. - New York, NY, USA: ACM, 2009. - Pp. 57-64.

10. John Tony «What is Semantic Search?». Techulator. - March 15, 2012.

11. Ladanova Ye.O., Yamashkin S.A. Semanticheskiy analizator dlya videleniya faktov iz tekstovix soobsheniy // Mejdunarodniy nauchno-issledovatelskiy jurnal. № 12 (66).

12. Laxuti D.G., Rubashkin V.Sh. Semanticheskiy (kontseptualniy) slovar dlya informatsionnix texnologiy // Nauchnotexnicheskaya informatsiya. 2000. № 7. - S. 1-9.

13. Melchuk I.A. Opit teorii lingvisticheskix modeley «Smisl-Tekst». M.: Shkola «Yaziki russkoy kulturi», 1999. - 346 s.

14. Osipov G.S., Smirnov I.V., Tixomirov I.A. Relyatsionno-situatsionniy metod poiska i analiza tekstov i yego prilojeniya // "Iskusstvenniy intellekt i prinyatie resheniy". - №2 - 2008.- S. 3-10.

15. Paducheva Ye.V. Dinamicheskie modeli v semantike leksiki. –M.: Yaziki slavyanskoy kulturi, 2004. - 608 s.

16. Smirnov I.V. Obrabotka yestestvennogo yazika i iskusstvenniy intellekt // https://cs.hse.ru/data/2017/12/06/1161306556/Slides-IntroToAI-HSE-2017-09-Smirnov.pdf.

17. Tixonov A.N., Arsenin V.Ya. Metodi resheniya nekorrektnix zadach. - M.: Nauka, 1986.

18. Tuzov V.A. Kompyuternaya semantika russkogo yazika. - SPb: Izd-vo SPbGU, 2003.- 391 s.

19. Fedosin S.A. Texnologicheskiy protsess resheniya zadachi modelirovaniya strukturi zemlepolzovaniya na baze dannix DZZ / Fedosin S.A., Yamashkin S.A. // Nauch.-texn. vestn. Povoljya. - 2014. - № 6. - S. 356-358.

20. Chistov D.V., Krapuxina N.V., Menшikov G.G., Kulexin S.Yu. Modelirovanie yestestvenno-yazikovix tekstov s ispolzovaniem ob'ektnogo podxoda // http://www.dialog-21.ru/.

21. Shipitsina L.Yu. Informatsionnie texnologii v lingvistike: ucheb. posobie /L.Yu. Shipitsina. - M.: FLINTA: Nauka, 2013. - 128 s. - S. 27.

22. Yamashkin S.A. Gibridnaya sistema analiza dannix distantsionnogo zondirovaniya Zemli / Yamashkin S.A. // Nauchno-texnicheskiy vestnik Povoljya. 2015. № 4. S. 173-175.

23. Yamashkin, S.A. Struktura regionalnogo geoportala, kak instrumenta publikatsii i rasprostraneniya geoprostranstvennix dannix / Yamashkin S.A. // Nauchno-texnicheskiy vestnik Povoljya. - 2015. - № 6. - S. 223-225.

24. http://www.techulator.com/resources/5933-What-Semantic-Search.aspx.

25. https://ibox.tools/semantic-analysis.

26. https://istio.com/text/index/.

27. https://advego.com/text/seo;

28. https://www.sumteh.ru/stati/internet-marketing/5-luchshih-besplatnih-servisov-analiza-tekstov.html.

29. https://bumotors.ru/uz/semanticheskaya-razmetka-chto-eto-takoe-i-zachem-ona-nuzhna-chto-takoe.html.

30. http://wordnet.princeton.edu.

31. https://ruscorpora.ru.

32. http://lexicograph.ruslang.ru/

Included in

Linguistics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.