Scientific reports of Bukhara State University


It isconsidered herethediagonalizable operatormatrix . The essential and point spectrum of are described via the spectrum of the more simpler operator matrices. If the elements of a matrix are linear operators in Banach or Hilbert spaces, then it is called a block-operator matrix. One of the special classes of block operator matrices are the Hamiltonians of a system with a nonconserved number of quantum particles on an integer or noninteger lattice. The inclusion for the discrete spectrum of is established.

First Page


Last Page



1. Tretter C. Spectral Theory of Block Operator Matrices and Applications. Imperial College Press, 2008.

2. Spohn H. Ground states of the spin-boson Hamiltonian. Comm. Math. Phys., 123 (1989), 277-304.

3. Huebner M., Spohn H. Spectral properties of the spin-boson Hamiltonian. Ann. Inst. Henri Poincare, 62:3 (1995), 289-323.

4. Jukov Yu.V., Minlos R.A. Spektr i rasseyanie v modeli "spin-bozon" s ne bolee chem tremya fotonami. Teor. imatem. fizika, 103:1 (1995), 63-81.

5. Minlos R.A., Spohn H. The three-body problem in radioactive decay: the case of one atom and at most two photons. Topics in Statistical and Theoretical Physics, American Mathematical Society Translations-Series 2, 177 (1996), 159-193.

6. Mogilner A.I. Hamiltonians in solid state physics as multiparticle discrete Schrodinger operators: problems and results. AdvancesinSov. Math. 5 (1991), 139-194.

7. Fridrixs K.O. Vozmusheniya spektra operatorov v gilbertovom prostranstve. - M.: Mir, 1972.

8. Malyshev V.A., Minlos R.A. Linear infinite-particle operators. Translations of Mathematical Monographs. 143, AMS, Providence, RI, 1995.

9. Lifschitz A.E. Magnetohydrodynamic and spectral theory. Vol. 4 of Developments in Electromagnetic Theory and Applications. Kluwer Academic Publishers Group, Dordrecht, 1989.

10. Thaller B. The Dirac equation. Texts and Monographs in Physics. Springer, Berlin, 1992.

11. Muminov M., Neidhardt H., Rasulov T. On the spectrum of the lattice spin-boson Hamiltonian for any coupling: 1D case. Journal of Mathematical Physics, 56 (2015), 053507.

12. Feynman R.P. Statistical mechanics: a set of lectures (2nd ed.). Reading, Massachusetts: Addison-Wesley, 1998.– P. 151.

13. Lakaev S.N., Rasulov T.X. Model v teorii vozmusheniy sushestvennogo spektra mnogochastichnix operatorov. Matematicheskie zametki. - 2003, -T. 73, -№ 4. - S. 556-564.

Included in

Life Sciences Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.