Scientific reports of Bukhara State University
Article Title
Abstract
In this article, we studied the inverse problem of finding the integral kernel for the multidimensional integro-differential heat equation. In the space of continuous functions with weight, the existence and uniqueness theorem for the stated problem is proved for an optional interval of function definition. In this paper, we study the problem of determining the core in a multidimensional heat equation for an arbitrary interval.
First Page
11
Last Page
17
References
1. Romanov V.G. Obratnie zadachi matematicheskoy fiziki. - M.: Nauka, 1984. - 264 s.
2. Romanov V.G. Ustoychivost v obratnix zadachax. - M.: Nauchniy Mir, 2005. - 296 s.
3. Durdiev D.K. Obratnoe zadachi dlya sred s posledeystviem. - T.: TURON-IQBOL, 2014. - 232 s.
4. Durdiyev D.Q., Jumayev J.J. O`ng tomoni integral hadli issiqlik o`tkazuvchanlikning integro-defferensial tenglamasi. - Buxoro: BuxDU ilmiy axboroti, 2016. - B. 14-21.
5. MixaylovV.P. Differentsialnoe uravneniya v chastnix proizvodnix. - M.: Nauka, 1976. - 391 s.
Recommended Citation
Durdiev, Durdimurod Kalandarovich and Zhumaev, Zhonibek Zhamolovich
(2020)
"THE PROBLEM OF DETERMINING A KERNEL IN A MULTIDIMENSIONAL INTEGRO-DIFFERENTIAL EQUATION OF HEAT CONDUCTION,"
Scientific reports of Bukhara State University: Vol. 3
:
Iss.
3
, Article 2.
Available at:
https://uzjournals.edu.uz/buxdu/vol3/iss3/2