Scientific Bulletin. Physical and Mathematical Research


This article is devoted to the formulation and study of a nonlocal boundary value problem with a conormal derivative for an equation of mixed elliptic-parabolic type. Here the existence and uniqueness of the solution of the problem is proved. Uniqueness of the solution is shown by the method of energy integrals, and existence of a solution is based on the theory of integral equations. Existence of a solution of a nonlocal boundary value problem is equivalently led to a solvability of a system of singular integral equations of normal type with zero index.

First Page


Last Page



1. Salahitdinov, M.S., Islomov, B.I. (2009). Uravneniya smeshannogo tipa s dvumya liniyami vyrozhdeniya [An equation of mixed type with two lines of degeneracy]. Tashkent: Mumtoz so‘z.

2. Salahitdinov, M.S., Akbarova, S.X. (1992). Kraeviye zadachi dlya uravneniya elliptiko-parabolicheskogo tipa s razlichnimi poryadkami virozhdeniya [Boundary-value problems for an equation of elliptic-parabolic type with different orders of degeneracy]. Doklady Akademii nauk Respubliki Uzbekistan. 12. Pp. 3-5.

3. Islomov, B., Akbarova, S.X. (2001). Kraeviye zadachi dlya uravneniya smeshannogo elliptiko-parabolicheskogo tipa s dvumya liniyami i razlichnimi poryadkami virojdeniya [Boundary-value problems for an equation of mixed elliptic-parabolic type with two lines and different orders of degeneracy]. Uzbekskij matematicheskij zhurnal. Pp. 33-41.

4. Tersenov, S.A. (1973). Vvedenie v teoriyu uravnenij, vyrozhdayushchihsya na granice [Introduction to the theory of equations that degenerate on the boundary]. Novosibirsk: NGU.

5. Tersenov, S.A. (1978). Pervaya kraevaya zadacha dlya uravneniya parabolicheskogo tipa s menyayushchimsya napravleniem vremeni [First boundary value problem for an equation of parabolic type with a changing time direction]. Novosibirsk. (Preprint) Institut matematiki SO AN SSSR: 055(02)5.

6. Vladimirov, V.S. (1971). Uravneniya matematicheskoj fiziki [Equations of mathematical physics]. Moskva: Nauka.

7. Salohiddinov, M.S. (2007). Integral tenglamalar [Integral equations]. Toshkent. Yangiyul poligraph service.

8. Mihlin, S.G. (1959). Lekcii po linejnym integralnym uravneniyam. [Lectures on linear integral equations]. Moskva: Fizmatgiz

9. Muskhelishvili, N.I. (1968). Singulyarnye integralnye uravneniya [Singular integral equations]. Moskva: Nauka.

10. Islomov, B. (1985). Kraevye zadachi tipa zadachi Trikomi dlya uravneniya smeshannogo tipa s negladkoj liniej vyrozhdeniya [Boundary value problems of the type of the Tricomi problem for an equation of mixed type with a nonsmooth line of degeneration]. Izvestiya AN UzSSR. Seriya fiziko-matematicheskih nauk. 6. pp.12-17.

Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.