•  
  •  
 

Scientific Bulletin. Physical and Mathematical Research

Abstract

The purpose of the present work was a comprehensive study of the diffusion, solubility and electrophysical properties of scandium (Sc), praseodymium (Pr) and europium (Eu) impurities in silicon. On the surface of the KEP-15 a layer of radioactive isotopes was sprayed: 46Sc, 143Pr2O3, or 152Eu2O3. The duration of diffusion annealing varied depending on the diffusion temperature of 5 to 72 hours. Autoradiography, measurements of conductivity and Hall's effect, an isothermal relaxation of capacity and current, a research of diffusion, solubility and electrophysical properties of Sc, Pr and Eu in silicon is carried out by complex methods of marked atoms, at various environments of annealing and for a wide interval of temperatures (1100÷12500C). The residual activity of a sample was measured on installation of a small background UMF-1500M with SBT-11 b-counter. The identification of spectra of 46Sc, 143Pr and 152Eu was also carried out on the АI-1024 pulse analyzer (FTI named after A.F. Ioffe RAS, St. Petersburg, Russia). The temperature dependence of the diffusion coefficient for the corresponding Sc, Pr and Eu impurities in silicon is Arrenus and can be described by the following ratios:

DSc=8·10-2 exp(-3.2 eV/kT) cm2s-1.

DPr=2·10-2 exp(-3,2 eV/kT) cm2s-1.

DEu=2·10-2 exp(-2.8 eV/kT) cm2s-1.

Comparing our Sc, Pr and Eu diffusion data in silicon with early diffusion results of other REM in silicon obtained by radioactive and other techniques shows that the diffuser deposition method and diffusion medium do not significantly affect the diffusion parameters of REEs in silicon. Sc, Pr and Eu have been found to exhibit, like other REEs studied by us, acceptor nature on the surface of n-type silicon after diffusion annealing. The Hall effect method determined the mobility of charge carriers - holes in diffusion-doped Sc, Pr and Eu silicon layers. The mobility of carriers of a charge is equal in diffusive layers of Si , Si and Si ~130 ÷260 сm2 and decreases with increase in concentration of Sc, Pr and Eu in silicon. The temperature dependence of the Hall coefficient - the concentration of charge carriers, as well as the method of isothermal relaxation of capacitance and current of any deep levels in the forbidden silicon zone characteristic of Sc, Pr, as well as Eu in silicon, was not found. The concentration distribution of charge carriers in layers of silicon doped with Sc, Pr and Eu impurities, as determined by electrical measurements, can be described by the ratios:

C ≈ (2÷4)·1017 erfc(x 2Dt ), cm3.

At the same time the superficial concentration of Sc, Pr and Eu atoms in silicon defined by a method of marked atoms makes @ 1018 ÷ of 1019 cm3.

First Page

19

Last Page

28

References

1. Fistul, V.I. (2004) Atomy legiruyushchih primesej v poluprovodnikah [Atoms of dopants in semiconductors]. Moscow: Fizmatlit.

2. Nazyrov, D.E., Regel, A.R., Kulikov, G.S. (1987) Kremniy, legirovannyy redkozemelnymi elementami [Silicon, doping rare-earth elements]. Preprint of the A.F.Ioffe Physicotechnical Institute, Russia. Acad. Sci., No. 1122. Sankt-Petersburg. Pp. 1-56.

3. Sobolev, N. A. (1995) Structure of light-Emitting Si : Er. Technology and physical properties (Review). Physics and technics of semiconductors. Vol. 29. Issue 7. Pp. 1153-1177.

4. Glazov, V.M., Potemkin, A.I., Timoshin, G.G., Mikhailova M.S. (1997) On the possibility of improving the thermal stability of Si by doping transition metals. Physics and technics of semiconductors. Vol. 29. Issue 9. Pp. 1025-1028.

5. Libertino, S. (1995) The effects of oxygen and defects on the deep-level properties of Er in crystalline Si. Journal of Applied Physics. Vol. 78. Issue 6. Pp. 3867-3873.

6. Wong, E.M.W., liu, H.W., Man, S.Q., Pun, E.Y.B., Chung, P.S. (1998) Erbium doping in silicon by thermal in diffusion. Japanese Journal of Applied Physics. Vol. 37. Issue 6B. Pp. 3669-3672.

7. Boltaks, B.I., Bahadyrhanov, M.K., Gorodeckij, S.M., Kulikov, G.S. (1972) Kompensirovannyj kremnij Compensated silicon. Leningrad: Nauka.

8. Boltaks, B.I. (1972) Diffuziya i tochechnye defekty v poluprovodnikah [Diffusion and point defects in semiconductors]. Leningrad: Nauka.

9. Murch, G.E., Novick A.S. (ed). (1984) Diffusion in Crystalline Solids. Orlando, Academic Press, New York.

10. Lykov, A.V. (1952) Teoriya teploprovodnostii [Theory of thermal conductivity]. Moscow: Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoj literatury.

11. Nazyrov, D.E., Usacheva, V.P., Kulikov, G.S., Malkovich, R.Sh. (1988) Diffuziya prazeodima v kremnii [Diffusion of praseodymium in silicon]. Pisma v Zhurnal tekhnicheskoj fiziki. Vol. 14. Issue 12. Pp. 1102-1104.

12. Azimov, G.K., Zaynabidinov, S., Nazyrov, D.E. (1989) Diffuziya skandiya v kremnii [Scandium diffusion in silicon]. Fizika i tekhnika poluprovodnikov. Vol. 23. Issue 3. Pp. 556-557.

13. Nazyrov, D.E., Kulikov, G.S., Malkovich, R.Sh. (1991) Diffuziya erbiya i tuliya v kremnii [Diffusion of erbium and thulium in silicon]. Fizika i tekhnika poluprovodnikov. Vol. 25. Issue 9. Pp. 1653-1654.

14. Nazyrov, D.E., Kulikov, G.S., Malkovich, R.Sh. (1997) Diffusion of promethium in silicon. Technical Physics Letters. Vol. 23. Issue 1. Pp. 46-50.

15. Nazyrov, D.E. (2003) Diffusion of europium in silicon. Semiconductors. Vol. 37. Issue 5. Pp. 551-552.

16. Nazyrov, D.E. (2006) Issledovanie diffuzii, rastvorimosti i elektricheskih svojstv gadoliniya v kremnii [Study of diffusion, solubility and electrical properties of gadolinium in silicon]. Elektronnaya obrabotka materialov. 6. Pp. 76-79.

15. Nazyrov, D.E. (2003) Diffusion of ytterbium in silicon. Semiconductors. Vol. 37. Issue 9. Pp. 1031-1032.

17. Zaynabidinov, S., Nazyrov, D.E., Bazarbaev, M.I. (2006) Diffuziya, rastvorimost' i elektricheskie svojstv samariya i itterbiya v kremnii [Diffusion, solubility and electrical properties of samarium and ytterbium in silicon]. Elektronnaya obrabotka materialov. 4. Pp. 90-92.

18. Zainabidinov, S., Nazyrov, D.E. (2007) Diffusion, solubility and electrical properties of scandiy and praseodim in silicon. Russian Physics Journal. Vol. 50. Issue 1. Pp. 75-77.

19. Zaynabidinov, S., Nazirov, D.E. (2007) Issledovanie diffuzii lantana v kremnii [Lanthanum diffusion study in silicon]. Izvestiya vysshih uchebnyh zavedenij. Elektronika. 1. Pp. 87-89.

20. Zaynabidinov, S., Nazirov, D.E. (2020) Vliyanie termicheskogo vozdejstviya na elektrofizicheskie svojstva kremniya, legirovannogo redkozemelnymi elementami [Effect of thermal action on electrophysical properties of silicon doped with rare earth elements]. Izvestiya vysshih uchebnyh zavedenij. Elektronika.. 1 (25). Pp. 69-72.

21. Nazyrov, D.E. (2007) Gettering of gold by samarium and gadolinium in silicon. Surface Engineering and Applied Electrochemistry. Vol. 43. Issue 3. Pp. 218-221.

22. Nazyrov, D.E. (2003) Diffusion of ytterbium in silicon. Semiconductors. Vol. 37. Issue 9. Pp. 1031-1032.

23. Nazyrov, D.E., Goncharov, S.A., Suvorov, A.V. (2000) Silicon single crystal ion-doped with ytterbium. Technical Physics Letters. Vol. 26. Issue 4. Pp. 326-327.

24. Nazyrov, D.E. (2006) Diffusion of terbium in silicon. Semiconductors. Vol. 40. Issue 6. Pp. 630-631.

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.