Acta of Turin Polytechnic University in Tashkent
Abstract
In this work we prove that the conjugacy between critical circle homeomorphisms with non integer criticality and linear rotation is singular function.
First Page
25
Last Page
27
References
- I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic theory, vol. 245, Springer, Berlin, Germany, 1982.
- M. Herman, “Sur la conjugaison diffe’rentiable des diffe’omorphismes du cercle a’ des rotations”, Institut des Hautes E’tudes Scientiiques, vol. 49, pp. 5–234, 1979.
- Y. Katznelson and D. Ornstein, “The differentiability of the conjugation of certain diffeomorphisms of the circle,” Ergodic theory and Dynamical Systems, vol. 9, no.4, pp.643–680, 1989.
- Y. Katznelson and D. Ornstein, “The absolute continuity of the conjugation of certain diffeomorphisms of the circle,” Ergodic theory and Dynamical Systems, vol. 9, no.4, pp.681–690, 1989.
- K. M. Khanin and Ya. G. Sinai, “Smoothness of conjugacies of diffeomorphisms of the circle with rotations,” Russian Mathematical Surveys, vol.44, no.1, pp.69–99, 1989, translation of Uspekhi Matematicheskikh Nauk,vol.44, pp.57–82, 1989.
- J.-C. Yoccoz, “Il n’y a pas de contre-exemple de Denjoy analytique,” Comptes Rendus des Se’ances de l’Acade’mie des Sciences, vol. 298, no. 7, pp. 141–144, 1984.
- G. Swiątek, “On critical circle homeomorphisms,” Boletim da Sociedade Brasileira de Matematica,vol.29, no.2,pp.329–351, 1998.
- J. Graczyk and G. Swiątek, “Singular measures in circle dynamics,” Communications
Recommended Citation
Safarov, U.A.
(2019)
"Conjugation Between Critical Circle Homeomorphisms and Linear Rotation,"
Acta of Turin Polytechnic University in Tashkent: Vol. 9
:
Iss.
2
, Article 2.
Available at:
https://uzjournals.edu.uz/actattpu/vol9/iss2/2
COinS