•  
  •  
 

Acta of Turin Polytechnic University in Tashkent

Abstract

Experiments have been carried out to study the effect of violasein on the activity of various protein kinases. It was shown that violacein inhibits the protein kinase C (PKC) subfamily of the classical type, as well as some novel and atypical forms of PKC enzymes. Data on the inhibition of the activity of the catalytic subunits of protein kinase A and protein kinase C by violasein activity testify to the direct interaction of violacein with these sites of the complex enzyme molecule. Kinetic analysis of inhibition of PKA by violacein showed that inhibition occurs in a mixed type with respect to ATP. There was also a slight inhibition of Ca2+/calmodulin-dependent protein kinase and the absence of the effect of violasein on the activity of protein tyrosine kinase (Src). A possible analogy in the mechanism of action of violacein with a known serine-threonine kinase inhibitor, staurosporin, is discussed.

First Page

11

Last Page

17

References

1. Durán, N., & Menck, C F.M. (2001). Chromobacterium violaceum: A review of pharmacological and industrial perspectives. Critical Reviews in Microbiology, 27, 201-222. http://dx.doi.org/10.1080/20014091096747. 2. Durán, M., Ponezi, A.N., Faljoni-Alario, A., Teixeira, M.F.S., Justo, G. Z., & Durán, N. (2012). Potential applications of violacein: a microbial pigment. Medicinal Chemistry Research, 21, 1524–1532. http://dx.doi.org/10.1007/s00044-011-9654-9. 3. Choi, S.Y., Yoon, K., Lee, J.I. & Mitchell, R.J. (2015). Violacein: properties and production of a versatile bacterial pigment. BioMed Research International, 2015, 465056. doi:10.1155/2015/465056. 4. Matz, C., Deines, P., Boenigk, J., Arndt, H., Eberl, L., Kjelleberg, S., & Jürgens, K. (2004). Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Applied and Environmental Microbiology, 70, 1593-1599. http://dx.doi.org/10.1128/AEM.70.3.1593-1599.2004. 5. Alshatwi, A.A., Subash-Babu, P., & Antonisamy, P. (2016). Violacein induces apoptosis in human breast cancer cells through up regulation of BAX, p53 and down regulation of MDM2. Experimental and Toxicological Pathology, 68, 89–97. http://dx.doi.org/10.1016/j.etp.2015.10.002. 6. Bromberg, N., Dreyfuss, J.L., Regatieri, C.V., Palladino, M.V., Durán, N., Nader, H.B., … Justo, G.Z. (2010). Growth inhibition and pro-apoptotic activity of violacein in Ehrlich ascites tumor. Chemico-Biological Interactions, 186, 43-52. http://dx.doi.org/10.1016/j.cbi.2010.04.016. 7. Ferreira, C.V., Bos, C.L., Versteeg, H.H., Justo, G.Z., Durán, N., & Peppelenbosch, M. P. (2004). Molecular mechanism of violacein-mediated human leukemia cell death. Blood, 104, 1459-1464. http://dx.doi.org/10.1182/blood-2004-02-0594. 8. Kodach, L.L., Bos, C.L., Durán, N., Peppelenbosch, M.P., Ferreira, C.V., & Hardwick, J.C.H. (2006). Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinogenesis, 27, 508-516. http://dx.doi.org/10.1093/carcin/bgi307. 9. Heung-Chin C., Robert Z. Qi, Hemant P. and Hong-Jian Zhu (2011). Regulation and Function of Protein Kinases and Phosphatases. Enzyme Research, V. 2011, Article ID 794089, http://dx.doi.org/10.4061/2011/794089. 10. Tamaoki, T., & Nakano, H. (1990). Potent and specific inhibitors of protein Kinase C of microbial origin. Nature Biotechnology, 8, 732–735. http://dx.doi.org/10.1038/nbt0890-732. 11. Stevenson, C.S., Capper, E.A., Roshak, A.K., Marquez, B., Grace, K., Gerwick, W. H., … Marshall, L. A. (2002). Scytonemin A marine natural product inhibitor of kinases key in hyperproliferative inflammatory diseases. Inflammation Research, 51, 112–114. http://dx.doi.org/10.1007/BF02684014. 12. Soliev A.B., Hosokawa K., & Enomoto K. (2015). Effects of prodigiosin family compounds from Pseudoalteromonas sp. 1020R on the activities of protein phosphatases and protein kinases. Journal of Enzyme Inhibition and Medicinal Chemistry, 30, 533–538. http://dx.doi.org/10.3109/14756366.2014.951347. 13. Bromberg, N., Justo, G.Z., Haun, M., Durán, N., & Ferreira, C.V. (2005). Violacein cytotoxicity on human blood lymphocytes and effect on phosphatases. Journal of Enzyme Inhibition and Medicinal Chemistry, 20, 449–454. http://dx.doi.org/10.1080/14756360500273052. 14. Yada, S., Wang, Y., Zou, Y., Nagasaki, K., Hosokawa, K., Osaka, I., … Enomoto, K. (2008). Isolation and characterization of two groups of novel marine bacteria producing violacein. Marine Biotechnology, 10, 128–132. http://dx.doi.org/10.1007/s10126-007-9046-9. 15. Toomik, R., & Ek, P. (1997). A potent and highly selective peptide substrate for protein kinase C assay. Biochemical Journal, 322, 455–460. http://dx.doi.org/10.1042/bj3220455. 16. Mellor, H., & Parker, P.J. (1998). The extended protein kinase C superfamily. Biochemical Journal, 332, 281–292. http://dx.doi.org/10.1042/bj3320281. 17. Kase, H., Iwahashi, K., Nakanishi, S., Matsuda, Y., Yamada, K., Takahashi, M., Murakata, C., … Kaneko, M. (1987). K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. Biochemical and Biophysical Research Communications, 142, 436-440. http://dx.doi.org/10.1016/0006-291X(87)90293-2. 18. Balibar, C.J., & Walsh, C.T. (2006). In vitro biosynthesis of violacein from l-tryptophan by the enzymes VioA−E from Chromobacterium violaceum. Biochemistry, 45, 15444-15457. http://dx.doi.org/10.1021/bi061998z. 19. Hoshino, T. (2011). Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: biosynthetic mechanism and pathway for construction of violacein core. Applied Microbiology and Biotechnology, 91, 1463-1475. http://dx.doi.org/10.1007/s00253-011-3468-z. 20. Sánchez, C., Braña, A.F., Méndez, C., & Salas, J.A. (2006). Reevaluation of the violacein biosynthetic pathway and its relationship to indolocarbazole biosynthesis. ChemBioChem, 7, 1231–1240. http://dx.doi.org/10.1002/cbic.v7:8.

Share

COinS